Detection of Proximal Caries Lesions on Bitewing Radiographs Using Deep Learning Method

射线照相术 医学 口腔正畸科 放射科 牙科
作者
Xiaotong Chen,Jiachang Guo,Jiaxue Ye,Mingming Zhang,Yu-Hong Liang
出处
期刊:Caries Research [S. Karger AG]
卷期号:56 (5-6): 455-463 被引量:24
标识
DOI:10.1159/000527418
摘要

This study aimed to evaluate the validity of a deep learning-based convolutional neural network (CNN) for detecting proximal caries lesions on bitewing radiographs. A total of 978 bitewing radiographs, 10,899 proximal surfaces, were evaluated by two endodontists and a radiologist, of which 2,719 surfaces were diagnosed and annotated with proximal caries and 8,180 surfaces were sound. The data were randomly divided into two datasets, with 818 bitewings in the training and validation dataset and 160 bitewings in the test dataset. Each annotation in the test set was then classified into 5 stages according to the extent of the lesion (E1, E2, D1, D2, D3). Faster R-CNN, a deep learning-based object detection method, was trained to detect proximal caries in the training and validation dataset and then was assessed on the test dataset. The diagnostic accuracy, sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and receiver operating characteristic curve were calculated. The performance of the network in the overall and different stages of lesions was compared with that of postgraduate students on the test dataset. A total of 388 carious lesions and 1,435 sound surfaces were correctly identified by the neural network; hence, the accuracy was 0.87. Furthermore, 27.6% of lesions went undetected, and 7% of sound surfaces were misdiagnosed by the neural network. The sensitivity, specificity, PPV, and NPV of the neural network were 0.72, 0.93, 0.77, and 0.91, respectively. In contrast with the network, 52.8% of lesions went undetected by the students, yielding a sensitivity of only 0.47. The F1-score of the students was 0.57, while the F1-score of the network was 0.74 despite the accuracy of 0.82. A significant difference in the sensitivity was found between the model and the postgraduate students when detecting different stages of lesions (p < 0.05). For early lesions which limited in enamel and the outer third of dentin, the neural network had sensitivities all above or at 0.65, while students showed sensitivities below 0.40. From our results, we conclude that the CNN may be an assistant in detecting proximal caries on bitewings.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Raylihuang完成签到,获得积分10
1秒前
安国香发布了新的文献求助10
1秒前
agnway完成签到,获得积分10
1秒前
于晏孙完成签到,获得积分10
2秒前
zby完成签到,获得积分10
2秒前
2秒前
oink完成签到,获得积分20
2秒前
2秒前
leehoo完成签到,获得积分10
2秒前
3秒前
hrh发布了新的文献求助10
3秒前
3秒前
摸鱼人完成签到,获得积分10
4秒前
hanleiharry1发布了新的文献求助10
4秒前
123发布了新的文献求助10
4秒前
左丘忻完成签到,获得积分10
5秒前
5秒前
5秒前
5秒前
5秒前
123完成签到,获得积分10
7秒前
无病呻吟的黛玉完成签到,获得积分10
7秒前
8秒前
WWWW发布了新的文献求助30
8秒前
oink发布了新的文献求助10
8秒前
小赵发布了新的文献求助10
8秒前
8秒前
琪琪的完成签到,获得积分10
9秒前
NNUsusan发布了新的文献求助10
9秒前
9秒前
Kindy完成签到,获得积分10
9秒前
tkp完成签到,获得积分10
10秒前
Yang完成签到,获得积分10
10秒前
Nic发布了新的文献求助10
10秒前
sb发布了新的文献求助10
10秒前
11秒前
研友_8Y26PL完成签到,获得积分10
11秒前
曾经可乐完成签到 ,获得积分10
11秒前
涂惠芳完成签到,获得积分10
12秒前
Lucas应助wys采纳,获得10
12秒前
高分求助中
Evolution 3rd edition 1500
Lire en communiste 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
the development of the right of privacy in new york 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
2-Acetyl-1-pyrroline: an important aroma component of cooked rice 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3180142
求助须知:如何正确求助?哪些是违规求助? 2830541
关于积分的说明 7978378
捐赠科研通 2492125
什么是DOI,文献DOI怎么找? 1329213
科研通“疑难数据库(出版商)”最低求助积分说明 635704
版权声明 602954