亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

CBIR-DSS: Business Decision Oriented Content-Based Recommendation Model for E-Commerce

计算机科学 决策支持系统 人工智能 机器学习 分析 MNIST数据库 深度学习 决策模型 数据挖掘
作者
Ashish Bagwari,Anurag Sinha,Navdeep Singh,Namit Garg,Jyotshana Kanti
出处
期刊:Information [MDPI AG]
卷期号:13 (10): 479-479 被引量:10
标识
DOI:10.3390/info13100479
摘要

Business-based decision support systems have been proposed for a few decades in the e-commerce and textile industries. However, these Decision Support Systems (DSS) have not been so productive in terms of business decision delivery. In our proposed model, we introduce a content-based image retrieval model based on a DSS and recommendations system for the textile industry, either offline or online. We used the Fashion MNIST dataset developed by Zalando to train our deep learning model. Our proposed hybrid model can demonstrate how a DSS can be integrated with a system that can separate customers based on their personal characteristics in order to tailor recommendations of products using behavioral analytics, which is trained based on MBTI personality data and Deap EEG data containing numerous pre-trained EEG brain waves. With this hybrid, a DSS can also show product usage analytics. Our proposed model has achieved the maximum accuracy compared to other proposed state-of-the-art models due to its qualitative analysis. In the first section of our analysis, we used a deep learning algorithm to train our CBIR model based on different classifiers such as VGG-net, Inception-Net, and U-net which have achieved an accuracy of 98.2% with a 2% of minimized error rate. The result was validated using different performance metrics such as F-score, F-weight, Precision, and Recall. The second part of our model has been tested on different machine learning algorithms with an accuracy rate of 89.9%. Thus, the entire model has been trained, validated, and tested separately to gain maximum efficiency. Our proposal for a DSS system, which integrates several subsystems with distinct functional sets and several model subsystems, is what makes this study special. Customer preference is one of the major problems facing merchants in the textile industry. Additionally, it can be extremely difficult for retailers to predict customer interests and preferences to create products that fulfill those needs. The three innovations presented in this work are a conceptual model for personality characterization, utilizing an amalgamation of an ECG classification model, a suggestion for a textile image retrieval model using Denoising Auto-Encoder, and a language model based on the MBTI for customer rating. Additionally, we have proposed a section showing how blockchain integration in data pre-processing can enhance its security and AI-based software quality assurance in a multi-model system.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
dangdang601发布了新的文献求助30
2分钟前
科研通AI2S应助dangdang601采纳,获得10
2分钟前
DrCuiTianjin完成签到 ,获得积分10
2分钟前
专注半烟完成签到 ,获得积分10
4分钟前
高大的天道完成签到 ,获得积分10
4分钟前
mzhang2完成签到 ,获得积分10
4分钟前
coolulu发布了新的文献求助10
5分钟前
5分钟前
5分钟前
coolulu完成签到,获得积分10
5分钟前
科研通AI2S应助roccc采纳,获得10
6分钟前
6分钟前
6分钟前
7分钟前
7分钟前
7分钟前
xxxxx炒菜发布了新的文献求助10
7分钟前
7分钟前
CipherSage应助xxxxx炒菜采纳,获得10
7分钟前
8分钟前
吴荣方完成签到 ,获得积分10
8分钟前
9分钟前
9分钟前
9分钟前
10分钟前
幽默发夹完成签到,获得积分10
10分钟前
帅气雪糕完成签到 ,获得积分10
10分钟前
科研通AI2S应助科研通管家采纳,获得10
11分钟前
11分钟前
大模型应助月亮采纳,获得10
11分钟前
Jenny完成签到,获得积分10
11分钟前
powell完成签到,获得积分10
11分钟前
12分钟前
12分钟前
研友_VZG7GZ应助科研通管家采纳,获得10
13分钟前
13分钟前
13分钟前
月亮发布了新的文献求助10
13分钟前
13分钟前
13分钟前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 890
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3257011
求助须知:如何正确求助?哪些是违规求助? 2899019
关于积分的说明 8303328
捐赠科研通 2568267
什么是DOI,文献DOI怎么找? 1395007
科研通“疑难数据库(出版商)”最低求助积分说明 652925
邀请新用户注册赠送积分活动 630662