Suppression of the coffee-ring effect by shape-dependent capillary interactions

咖啡环效应 下降(电信) 毛细管作用 化学 球体 化学物理 粒子(生态学) 蒸发 机械 材料科学 复合材料 纳米技术 物理 气象学 计算机科学 电信 地质学 天文 海洋学
作者
Peter J. Yunker,Tim Still,Matthew Lohr,Arjun G. Yodh
出处
期刊:Nature [Nature Portfolio]
卷期号:476 (7360): 308-311 被引量:1437
标识
DOI:10.1038/nature10344
摘要

When a drop of liquid dries on a solid surface, its suspended particulate matter is deposited in ring-like fashion. This phenomenon, known as the coffee-ring effect, is familiar to anyone who has observed a drop of coffee dry. During the drying process, drop edges become pinned to the substrate, and capillary flow outward from the centre of the drop brings suspended particles to the edge as evaporation proceeds. After evaporation, suspended particles are left highly concentrated along the original drop edge. The coffee-ring effect is manifested in systems with diverse constituents, ranging from large colloids to nanoparticles and individual molecules. In fact--despite the many practical applications for uniform coatings in printing, biology and complex assembly-the ubiquitous nature of the effect has made it difficult to avoid. Here we show experimentally that the shape of the suspended particles is important and can be used to eliminate the coffee-ring effect: ellipsoidal particles are deposited uniformly during evaporation. The anisotropic shape of the particles significantly deforms interfaces, producing strong interparticle capillary interactions. Thus, after the ellipsoids are carried to the air-water interface by the same outward flow that causes the coffee-ring effect for spheres, strong long-ranged interparticle attractions between ellipsoids lead to the formation of loosely packed or arrested structures on the air-water interface. These structures prevent the suspended particles from reaching the drop edge and ensure uniform deposition. Interestingly, under appropriate conditions, suspensions of spheres mixed with a small number of ellipsoids also produce uniform deposition. Thus, particle shape provides a convenient parameter to control the deposition of particles, without modification of particle or solvent chemistry.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
紫色哀伤完成签到,获得积分10
1秒前
acadedog完成签到 ,获得积分10
2秒前
2秒前
null应助拉格朗日柴犬采纳,获得10
3秒前
烟花应助hjjjjj1采纳,获得10
4秒前
氯吡格雷发布了新的文献求助10
4秒前
zz完成签到,获得积分10
5秒前
科研通AI2S应助大梦采纳,获得10
6秒前
老牛完成签到 ,获得积分10
6秒前
cgl155410完成签到,获得积分10
8秒前
8秒前
8秒前
浮游应助冷傲藏鸟采纳,获得10
8秒前
9秒前
华仔应助伶俐碧萱采纳,获得10
10秒前
安心完成签到,获得积分10
10秒前
科研通AI2S应助May采纳,获得10
11秒前
12秒前
鱼鱼鱼鱼完成签到,获得积分20
12秒前
搜集达人应助梦希陌采纳,获得10
12秒前
量子星尘发布了新的文献求助10
13秒前
曹玮完成签到 ,获得积分20
14秒前
橙子发布了新的文献求助10
14秒前
husy完成签到,获得积分10
14秒前
杨柳发布了新的文献求助10
15秒前
16秒前
16秒前
wanci应助鱼鱼鱼鱼采纳,获得10
17秒前
桐桐应助zwf123采纳,获得10
17秒前
顾矜应助ys采纳,获得20
18秒前
科研通AI6应助TWO宝采纳,获得10
18秒前
局内人发布了新的文献求助10
18秒前
完美世界应助maybe采纳,获得10
19秒前
20秒前
loong发布了新的文献求助10
20秒前
爱吃橙子的苹果水完成签到 ,获得积分10
21秒前
冷傲藏鸟完成签到,获得积分20
21秒前
Ava应助bxb采纳,获得10
21秒前
梦希陌完成签到,获得积分10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4601983
求助须知:如何正确求助?哪些是违规求助? 4011438
关于积分的说明 12419208
捐赠科研通 3691523
什么是DOI,文献DOI怎么找? 2035123
邀请新用户注册赠送积分活动 1068423
科研通“疑难数据库(出版商)”最低求助积分说明 952869