In-Situ TEM Observation of Solid Electrolyte Interface Evolution during Li-Ion Battery Opeeration

电解质 阳极 电极 材料科学 钝化 电池(电) 锂离子电池 化学工程 复合材料 化学 图层(电子) 功率(物理) 物理 物理化学 工程类 量子力学
作者
Akihiro Kushima,Nariaki Kuriyama,Takanori Maebashi,Yoshiya Fujiwara,Ju Li
出处
期刊:Meeting abstracts 卷期号:MA2015-02 (5): 375-375
标识
DOI:10.1149/ma2015-02/5/375
摘要

Solid electrolyte interface (SEI) plays a critical role in the Li-ion battery. The formation of the SEI passivates the electrode surface and prevents excessive decomposition of the electrolyte. On the other hand, it can degrade the electrolyte and cause a battery to fail if the electrolyte continues to decompose due to insufficient passivation of the electrode. This can be severe for the high capacity anode with large volume changes during charge/discharge cycles. With the expansion and the contraction of the electrode, SEI formed on the surface can crack or delaminate exposing a fresh surface to the electrolyte and cause poor cyclability of the battery. Understanding how does the SEI response to the volume change of the electrode is important to design the electrode structure to improve the cycle performance. The thickness of the SEI is in the nano-meter scale. Therefore, high-resolution imaging using electron microscopy is essential for observing the reaction process. In this work we present the in-situ transmission electro microscopy observation of the structural evolution of the SEI formed on a Si anode during lithium ion battery operations. Here, we developed a liquid confining cell to prevent electrolyte from evaporating into the high vacuum inside the TEM. We observed the formation of a SEI layer on the Si film during charge along with the volume expansion of the film. Upon discharge, the contraction of the film was observed. The shrinking of the film was not uniform across the film and the strain gradient caused a tension on the SEI layer resulting in the crack formation. New SEI will form on the freshly exposed Si surface on the following charge. This can cause continuous decomposition of the electrolyte and eventual failure due to the electrolyte consumption. The in-situ TEM experiment in this work shows the breaking of the SEI can take place during the discharge after it was formed on charging. Various combinations of the electrolyte, electrode, and the applied potential or current density are necessary to obtain the optimum battery design for producing adequate SEI layer or prevent them from forming. However, out observation provides important information toward designing a battery structure with improved performance. Figure caption: Sequential TEM image of the SEI cracking on Si anode discharged at 0.0 V vs. LiCoO 2 . Figure 1

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
珂尔维特发布了新的文献求助10
1秒前
Hello应助夏弥2016采纳,获得10
2秒前
乐于助人大好人完成签到 ,获得积分10
4秒前
紫皇完成签到,获得积分10
4秒前
Ava应助阿拉采纳,获得10
4秒前
科研通AI5应助Wangle采纳,获得10
6秒前
6秒前
科研通AI5应助忧郁的灵竹采纳,获得30
6秒前
粗心的小蜜蜂完成签到,获得积分10
7秒前
七凉完成签到 ,获得积分10
8秒前
AFM完成签到 ,获得积分10
11秒前
脑洞疼应助珂尔维特采纳,获得10
12秒前
cabbage完成签到,获得积分10
12秒前
Denmark发布了新的文献求助10
13秒前
褚浩然完成签到,获得积分10
14秒前
Sodagreen2023完成签到,获得积分10
14秒前
罗大大完成签到 ,获得积分10
14秒前
15秒前
斯文败类应助小李采纳,获得10
16秒前
微雨发布了新的文献求助10
18秒前
阿鑫完成签到 ,获得积分10
20秒前
orixero应助火山采纳,获得10
20秒前
liuz53完成签到,获得积分20
21秒前
22秒前
26秒前
26秒前
Cupid完成签到,获得积分10
26秒前
隐形白开水完成签到,获得积分10
26秒前
我是老大应助科研通管家采纳,获得10
28秒前
SciGPT应助科研通管家采纳,获得10
29秒前
乐乐应助科研通管家采纳,获得10
29秒前
科研通AI5应助科研通管家采纳,获得10
29秒前
QOP应助科研通管家采纳,获得10
29秒前
30秒前
月昔完成签到,获得积分10
31秒前
丘比特应助王王采纳,获得10
31秒前
小李发布了新的文献求助10
31秒前
傲娇的笑白完成签到 ,获得积分10
31秒前
学术大白完成签到 ,获得积分10
33秒前
典雅的俊驰应助张利双采纳,获得10
34秒前
高分求助中
Continuum Thermodynamics and Material Modelling 2000
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
いちばんやさしい生化学 500
Skin Tissue Engineering Methods and Protocols Book May 2025 300
Starvation biology of Plutella xylostella from a post-harvest crop sanitation perspective 250
Andrew Duncan Senior: Physician of the Enlightenment 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3688808
求助须知:如何正确求助?哪些是违规求助? 3238556
关于积分的说明 9835857
捐赠科研通 2950593
什么是DOI,文献DOI怎么找? 1618087
邀请新用户注册赠送积分活动 764837
科研通“疑难数据库(出版商)”最低求助积分说明 738889