PARAFAC2—Part I. A direct fitting algorithm for the PARAFAC2 model

栏(排版) 一般化 基质(化学分析) 算法 数据矩阵 数据集 集合(抽象数据类型) 主成分分析 数学 计算机科学 统计 基因 数学分析 复合材料 连接(主束) 生物化学 化学 材料科学 系统发育树 程序设计语言 几何学 克莱德
作者
Henk A. L. Kiers,Jos M. F. ten Berge,Rasmus Bro
出处
期刊:Journal of Chemometrics [Wiley]
卷期号:13 (3-4): 275-294 被引量:388
标识
DOI:10.1002/(sici)1099-128x(199905/08)13:3/4<275::aid-cem543>3.0.co;2-b
摘要

PARAFAC is a generalization of principal component analysis (PCA) to the situation where a set of data matrices is to be analysed. If each data matrix has the same row and column units, the resulting data are three-way data and can be modelled by the PARAFAC1 model. If each data matrix has the same column units but different (numbers of) row units, the PARAFAC2 model can be used. Like the PARAFAC1 model, the PARAFAC2 model gives unique solutions under certain mild assumptions, whereas it is less severely constrained than PARAFAC1. It may therefore also be used for regular three-way data in situations where the PARAFAC1 model is too restricted. Usually the PARAFAC2 model is fitted to a set of matrices with cross-products between the column units. However, this model-fitting procedure is computationally complex and inefficient. In the present paper a procedure for fitting the PARAFAC2 model directly to the set of data matrices is proposed. It is shown that this algorithm is more efficient than the indirect fitting algorithm. Moreover, it is more easily adjusted so as to allow for constraints on the parameter matrices, to handle missing data, as well as to handle generalizations to sets of three- and higher-way data. Furthermore, with the direct fitting approach we also gain information on the row units, in the form of ‘factor scores’. As will be shown, this elaboration of the model in no way limits the feasibility of the method. Even though full information on the row units becomes available, the algorithm is based on the usually much smaller cross-product matrices only. Copyright © 1999 John Wiley & Sons, Ltd.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
靥礼服完成签到,获得积分10
1秒前
Ollm完成签到 ,获得积分10
1秒前
言亦云发布了新的文献求助10
1秒前
2秒前
zhengzehong完成签到,获得积分10
3秒前
学术垃圾发布了新的文献求助10
7秒前
完美世界应助无心的夏烟采纳,获得10
8秒前
8秒前
10秒前
热心易绿完成签到 ,获得积分10
10秒前
酷波er应助无心的夏烟采纳,获得10
11秒前
善学以致用应助靥礼服采纳,获得10
13秒前
坦率冰旋完成签到,获得积分10
15秒前
astost完成签到,获得积分10
15秒前
rayce发布了新的文献求助10
15秒前
chen完成签到,获得积分10
16秒前
一缕阳光完成签到,获得积分10
16秒前
19秒前
Hysen_L发布了新的文献求助10
20秒前
my196755发布了新的文献求助10
23秒前
23秒前
younghippo完成签到,获得积分10
23秒前
HHH发布了新的文献求助10
24秒前
SYLH应助amin采纳,获得10
26秒前
26秒前
桐桐应助无味采纳,获得30
27秒前
wangling2333完成签到,获得积分10
27秒前
文静映安发布了新的文献求助10
28秒前
tuzhifengyin完成签到,获得积分10
29秒前
懒羊羊完成签到,获得积分10
30秒前
学术芽完成签到,获得积分10
31秒前
rayce完成签到,获得积分10
32秒前
32秒前
my196755完成签到,获得积分10
35秒前
36秒前
曾经小伙完成签到 ,获得积分10
36秒前
lili完成签到 ,获得积分10
36秒前
爆米花应助HHH采纳,获得10
36秒前
Pandaer发布了新的文献求助10
39秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950988
求助须知:如何正确求助?哪些是违规求助? 3496346
关于积分的说明 11081695
捐赠科研通 3226885
什么是DOI,文献DOI怎么找? 1784005
邀请新用户注册赠送积分活动 868114
科研通“疑难数据库(出版商)”最低求助积分说明 800993