PARAFAC2—Part I. A direct fitting algorithm for the PARAFAC2 model

栏(排版) 一般化 基质(化学分析) 算法 数据矩阵 数据集 集合(抽象数据类型) 主成分分析 数学 计算机科学 统计 基因 数学分析 复合材料 连接(主束) 生物化学 化学 材料科学 系统发育树 程序设计语言 几何学 克莱德
作者
Henk A. L. Kiers,Jos M. F. ten Berge,Rasmus Bro
出处
期刊:Journal of Chemometrics [Wiley]
卷期号:13 (3-4): 275-294 被引量:388
标识
DOI:10.1002/(sici)1099-128x(199905/08)13:3/4<275::aid-cem543>3.0.co;2-b
摘要

PARAFAC is a generalization of principal component analysis (PCA) to the situation where a set of data matrices is to be analysed. If each data matrix has the same row and column units, the resulting data are three-way data and can be modelled by the PARAFAC1 model. If each data matrix has the same column units but different (numbers of) row units, the PARAFAC2 model can be used. Like the PARAFAC1 model, the PARAFAC2 model gives unique solutions under certain mild assumptions, whereas it is less severely constrained than PARAFAC1. It may therefore also be used for regular three-way data in situations where the PARAFAC1 model is too restricted. Usually the PARAFAC2 model is fitted to a set of matrices with cross-products between the column units. However, this model-fitting procedure is computationally complex and inefficient. In the present paper a procedure for fitting the PARAFAC2 model directly to the set of data matrices is proposed. It is shown that this algorithm is more efficient than the indirect fitting algorithm. Moreover, it is more easily adjusted so as to allow for constraints on the parameter matrices, to handle missing data, as well as to handle generalizations to sets of three- and higher-way data. Furthermore, with the direct fitting approach we also gain information on the row units, in the form of ‘factor scores’. As will be shown, this elaboration of the model in no way limits the feasibility of the method. Even though full information on the row units becomes available, the algorithm is based on the usually much smaller cross-product matrices only. Copyright © 1999 John Wiley & Sons, Ltd.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4399com应助Planetary采纳,获得10
1秒前
聪慧的钻石完成签到,获得积分10
2秒前
3秒前
nicewink完成签到,获得积分10
5秒前
8秒前
9秒前
sean完成签到,获得积分10
10秒前
11秒前
11秒前
12秒前
科研通AI2S应助感动清炎采纳,获得10
13秒前
典雅的俊驰应助感动清炎采纳,获得10
13秒前
LSY-henu完成签到,获得积分10
14秒前
轩贝完成签到,获得积分10
15秒前
小二郎应助执剑燃此生采纳,获得10
16秒前
16秒前
17秒前
小点点发布了新的文献求助10
18秒前
star发布了新的文献求助10
19秒前
小马甲应助勤恳的尔蝶采纳,获得10
19秒前
脑洞疼应助小古采纳,获得50
19秒前
huo应助丸子她爸采纳,获得10
20秒前
xushanqi发布了新的文献求助200
21秒前
bkagyin应助温婉的笑阳采纳,获得10
21秒前
爱上叶子的猫完成签到,获得积分10
23秒前
郑一萌完成签到,获得积分10
23秒前
彭于晏应助vvvvyl采纳,获得10
24秒前
yangya应助华东小可爱采纳,获得10
24秒前
友好睿渊完成签到,获得积分20
24秒前
Lucas应助雍雍采纳,获得10
25秒前
25秒前
Ava应助Wang Mu采纳,获得10
26秒前
Jasper应助震动的强炫采纳,获得10
26秒前
Betty完成签到,获得积分10
26秒前
28秒前
29秒前
30秒前
YNWAlxh发布了新的文献求助10
30秒前
Hanmos3624完成签到,获得积分10
31秒前
31秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
The Conscience of the Party: Hu Yaobang, China’s Communist Reformer 600
Geochemistry, 2nd Edition 地球化学经典教科书第二版,不要epub版本 431
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3302000
求助须知:如何正确求助?哪些是违规求助? 2936557
关于积分的说明 8478065
捐赠科研通 2610335
什么是DOI,文献DOI怎么找? 1425076
科研通“疑难数据库(出版商)”最低求助积分说明 662289
邀请新用户注册赠送积分活动 646456