Motion estimation in vehicular environments based on Bayesian dynamic networks

障碍物 计算机科学 碰撞 动态贝叶斯网络 贝叶斯网络 基本事实 贝叶斯概率 工作(物理) 人工智能 运动(物理) 计算机安全 地理 考古 机械工程 工程类
作者
Lauro Reyes-Cocoletzi,Iván Olmos-Pineda,J. Arturo Olvera-López
出处
期刊:Journal of Intelligent and Fuzzy Systems [IOS Press]
卷期号:42 (5): 4673-4684 被引量:2
标识
DOI:10.3233/jifs-219255
摘要

The cornerstone to achieve the development of autonomous ground driving with the lowest possible risk of collision in real traffic environments is the movement estimation obstacle. Predicting trajectories of multiple obstacles in dynamic traffic scenarios is a major challenge, especially when different types of obstacles such as vehicles and pedestrians are involved. According to the issues mentioned, in this work a novel method based on Bayesian dynamic networks is proposed to infer the paths of interest objects (IO). Environmental information is obtained through stereo video, the direction vectors of multiple obstacles are computed and the trajectories with the highest probability of occurrence and the possibility of collision are highlighted. The proposed approach was evaluated using test environments considering different road layouts and multiple obstacles in real-world traffic scenarios. A comparison of the results obtained against the ground truth of the paths taken by each detected IO is performed. According to experimental results, the proposed method obtains a prediction rate of 75% for the change of direction taking into consideration the risk of collision. The importance of the proposal is that it does not obviate the risk of collision in contrast with related work.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
十一发布了新的文献求助10
1秒前
杨猫宁完成签到,获得积分10
1秒前
2秒前
ZZDXXX完成签到,获得积分10
2秒前
啾啾发布了新的文献求助10
2秒前
2秒前
amberzyc应助Double采纳,获得10
3秒前
xiaoluo完成签到 ,获得积分10
3秒前
浮游应助典雅又夏采纳,获得10
3秒前
3秒前
胡周瑜完成签到,获得积分10
3秒前
4秒前
5秒前
5秒前
77完成签到,获得积分20
5秒前
火龙果完成签到,获得积分10
6秒前
8秒前
feitian201861发布了新的文献求助10
8秒前
慕青应助11采纳,获得10
8秒前
9秒前
申燕婷完成签到 ,获得积分10
9秒前
深情的秋白完成签到 ,获得积分10
9秒前
无情思卉发布了新的文献求助10
9秒前
舒适的若云完成签到,获得积分20
10秒前
10秒前
11秒前
11秒前
CipherSage应助马小花花花儿采纳,获得10
11秒前
11秒前
muziyang完成签到,获得积分10
12秒前
星辰发布了新的文献求助10
12秒前
13秒前
充电宝应助LongSun采纳,获得10
13秒前
13秒前
13秒前
14秒前
思源应助啾啾采纳,获得10
14秒前
14秒前
15秒前
奋斗成风发布了新的文献求助10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 530
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5351663
求助须知:如何正确求助?哪些是违规求助? 4484642
关于积分的说明 13959937
捐赠科研通 4384271
什么是DOI,文献DOI怎么找? 2408898
邀请新用户注册赠送积分活动 1401448
关于科研通互助平台的介绍 1374928