Motion estimation in vehicular environments based on Bayesian dynamic networks

障碍物 计算机科学 碰撞 动态贝叶斯网络 贝叶斯网络 基本事实 贝叶斯概率 工作(物理) 人工智能 运动(物理) 计算机安全 地理 考古 机械工程 工程类
作者
Lauro Reyes-Cocoletzi,Iván Olmos-Pineda,J. Arturo Olvera-López
出处
期刊:Journal of Intelligent and Fuzzy Systems [IOS Press]
卷期号:42 (5): 4673-4684 被引量:2
标识
DOI:10.3233/jifs-219255
摘要

The cornerstone to achieve the development of autonomous ground driving with the lowest possible risk of collision in real traffic environments is the movement estimation obstacle. Predicting trajectories of multiple obstacles in dynamic traffic scenarios is a major challenge, especially when different types of obstacles such as vehicles and pedestrians are involved. According to the issues mentioned, in this work a novel method based on Bayesian dynamic networks is proposed to infer the paths of interest objects (IO). Environmental information is obtained through stereo video, the direction vectors of multiple obstacles are computed and the trajectories with the highest probability of occurrence and the possibility of collision are highlighted. The proposed approach was evaluated using test environments considering different road layouts and multiple obstacles in real-world traffic scenarios. A comparison of the results obtained against the ground truth of the paths taken by each detected IO is performed. According to experimental results, the proposed method obtains a prediction rate of 75% for the change of direction taking into consideration the risk of collision. The importance of the proposal is that it does not obviate the risk of collision in contrast with related work.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
大模型应助天真苑睐采纳,获得10
2秒前
啦啦啦发布了新的文献求助10
2秒前
传奇3应助怀瑾采纳,获得10
5秒前
zeng完成签到,获得积分10
6秒前
6秒前
香蕉觅云应助JUSTs0so采纳,获得10
8秒前
程风破浪完成签到,获得积分10
10秒前
搜集达人应助ZXC采纳,获得10
11秒前
无语的诗珊完成签到,获得积分10
13秒前
14秒前
14秒前
啦啦啦完成签到,获得积分10
15秒前
15秒前
17秒前
permanent完成签到,获得积分10
17秒前
活力沧海应助复杂的棒球采纳,获得10
18秒前
18秒前
谷云发布了新的文献求助10
19秒前
Kane完成签到,获得积分10
19秒前
33333发布了新的文献求助10
19秒前
针真滴完成签到 ,获得积分10
19秒前
20秒前
20秒前
xhsz1111发布了新的文献求助10
20秒前
Vipiggy完成签到,获得积分10
20秒前
ikun666完成签到,获得积分10
20秒前
舒心冷珍完成签到 ,获得积分10
20秒前
Henry完成签到,获得积分10
21秒前
jzt12138发布了新的文献求助10
23秒前
27秒前
唐艺尹发布了新的文献求助10
27秒前
上官若男应助鉴鸣盈采纳,获得10
27秒前
28秒前
29秒前
29秒前
灰色的乌完成签到,获得积分10
33秒前
量子星尘发布了新的文献求助10
33秒前
金金发布了新的文献求助10
34秒前
浩想碎觉发布了新的文献求助10
34秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5684860
求助须知:如何正确求助?哪些是违规求助? 5039294
关于积分的说明 15185532
捐赠科研通 4843973
什么是DOI,文献DOI怎么找? 2597078
邀请新用户注册赠送积分活动 1549661
关于科研通互助平台的介绍 1508145