Motion estimation in vehicular environments based on Bayesian dynamic networks

障碍物 计算机科学 碰撞 动态贝叶斯网络 贝叶斯网络 基本事实 贝叶斯概率 工作(物理) 人工智能 运动(物理) 计算机安全 地理 机械工程 工程类 考古
作者
Lauro Reyes-Cocoletzi,Iván Olmos-Pineda,J. Arturo Olvera-López
出处
期刊:Journal of Intelligent and Fuzzy Systems [IOS Press]
卷期号:42 (5): 4673-4684 被引量:2
标识
DOI:10.3233/jifs-219255
摘要

The cornerstone to achieve the development of autonomous ground driving with the lowest possible risk of collision in real traffic environments is the movement estimation obstacle. Predicting trajectories of multiple obstacles in dynamic traffic scenarios is a major challenge, especially when different types of obstacles such as vehicles and pedestrians are involved. According to the issues mentioned, in this work a novel method based on Bayesian dynamic networks is proposed to infer the paths of interest objects (IO). Environmental information is obtained through stereo video, the direction vectors of multiple obstacles are computed and the trajectories with the highest probability of occurrence and the possibility of collision are highlighted. The proposed approach was evaluated using test environments considering different road layouts and multiple obstacles in real-world traffic scenarios. A comparison of the results obtained against the ground truth of the paths taken by each detected IO is performed. According to experimental results, the proposed method obtains a prediction rate of 75% for the change of direction taking into consideration the risk of collision. The importance of the proposal is that it does not obviate the risk of collision in contrast with related work.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
请叫我风吹麦浪应助86采纳,获得10
1秒前
smottom应助Bao采纳,获得10
2秒前
大模型应助小沈采纳,获得10
2秒前
4秒前
双景关注了科研通微信公众号
4秒前
Xielin完成签到,获得积分10
6秒前
6秒前
开朗寇完成签到,获得积分10
6秒前
耶啵完成签到,获得积分10
7秒前
8秒前
Upupupiu完成签到,获得积分10
8秒前
领导范儿应助Bonnie采纳,获得10
9秒前
Wuc完成签到,获得积分20
9秒前
10秒前
10秒前
重要从灵完成签到,获得积分10
11秒前
华仔应助等待冬易采纳,获得10
12秒前
lilili发布了新的文献求助10
13秒前
14秒前
刘丹丹发布了新的文献求助10
14秒前
谦让寻凝完成签到 ,获得积分10
17秒前
oop发布了新的文献求助30
17秒前
ATREE完成签到,获得积分10
17秒前
Zoe_Zhang发布了新的文献求助10
18秒前
Wuc发布了新的文献求助10
19秒前
19秒前
23秒前
24秒前
王二完成签到,获得积分20
24秒前
自信的笑容完成签到,获得积分10
25秒前
oop完成签到,获得积分20
26秒前
Helium完成签到,获得积分10
26秒前
诸熠晖完成签到 ,获得积分10
26秒前
龍fei发布了新的文献求助30
26秒前
科研小白发布了新的文献求助10
27秒前
悲凉的新筠完成签到,获得积分10
27秒前
27秒前
等待冬易发布了新的文献求助10
27秒前
加菲丰丰应助柯浩天采纳,获得30
28秒前
28秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966681
求助须知:如何正确求助?哪些是违规求助? 3512158
关于积分的说明 11162133
捐赠科研通 3247021
什么是DOI,文献DOI怎么找? 1793676
邀请新用户注册赠送积分活动 874532
科研通“疑难数据库(出版商)”最低求助积分说明 804421