Motion estimation in vehicular environments based on Bayesian dynamic networks

障碍物 计算机科学 碰撞 动态贝叶斯网络 贝叶斯网络 基本事实 贝叶斯概率 工作(物理) 人工智能 运动(物理) 计算机安全 地理 机械工程 工程类 考古
作者
Lauro Reyes-Cocoletzi,Iván Olmos-Pineda,J. Arturo Olvera-López
出处
期刊:Journal of Intelligent and Fuzzy Systems [IOS Press]
卷期号:42 (5): 4673-4684 被引量:2
标识
DOI:10.3233/jifs-219255
摘要

The cornerstone to achieve the development of autonomous ground driving with the lowest possible risk of collision in real traffic environments is the movement estimation obstacle. Predicting trajectories of multiple obstacles in dynamic traffic scenarios is a major challenge, especially when different types of obstacles such as vehicles and pedestrians are involved. According to the issues mentioned, in this work a novel method based on Bayesian dynamic networks is proposed to infer the paths of interest objects (IO). Environmental information is obtained through stereo video, the direction vectors of multiple obstacles are computed and the trajectories with the highest probability of occurrence and the possibility of collision are highlighted. The proposed approach was evaluated using test environments considering different road layouts and multiple obstacles in real-world traffic scenarios. A comparison of the results obtained against the ground truth of the paths taken by each detected IO is performed. According to experimental results, the proposed method obtains a prediction rate of 75% for the change of direction taking into consideration the risk of collision. The importance of the proposal is that it does not obviate the risk of collision in contrast with related work.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
kjz发布了新的文献求助10
2秒前
kjz发布了新的文献求助10
3秒前
6秒前
光电效应完成签到,获得积分10
7秒前
gaugua发布了新的文献求助10
7秒前
8秒前
9秒前
10秒前
彩色大碗完成签到,获得积分10
10秒前
12秒前
13秒前
13秒前
浮生发布了新的文献求助10
14秒前
明理苑博发布了新的文献求助30
14秒前
15秒前
乐乐应助gaugua采纳,获得10
15秒前
ChenXinde发布了新的文献求助10
16秒前
ccc完成签到,获得积分10
16秒前
SciGPT应助浮云采纳,获得10
17秒前
Bruce完成签到,获得积分10
18秒前
周老八发布了新的文献求助10
18秒前
虚幻青发布了新的文献求助10
18秒前
EST杨完成签到 ,获得积分10
19秒前
22秒前
23秒前
23秒前
24秒前
浮云完成签到,获得积分10
26秒前
天天快乐应助热情的人杰采纳,获得10
26秒前
風來完成签到,获得积分10
26秒前
ChenXinde发布了新的文献求助10
26秒前
27秒前
浮云发布了新的文献求助10
28秒前
浮生发布了新的文献求助10
29秒前
29秒前
匡佐英发布了新的文献求助10
32秒前
33秒前
33秒前
记号完成签到,获得积分10
35秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1200
How Maoism Was Made: Reconstructing China, 1949-1965 800
Medical technology industry in China 600
ANSYS Workbench基础教程与实例详解 510
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3312259
求助须知:如何正确求助?哪些是违规求助? 2944883
关于积分的说明 8521919
捐赠科研通 2620620
什么是DOI,文献DOI怎么找? 1432965
科研通“疑难数据库(出版商)”最低求助积分说明 664797
邀请新用户注册赠送积分活动 650134