A hybrid partial least squares regression-based real time pore pressure estimation method for complex geological drilling process

偏最小二乘回归 计算机科学 离群值 预处理器 主成分分析 小波 数据挖掘 均方误差 回归 钻井液 钻探 人工智能 算法 统计 数学 机器学习 工程类 机械工程
作者
Xi Chen,Weihua Cao,Chao Gan,Min Wu
出处
期刊:Journal of Petroleum Science and Engineering [Elsevier]
卷期号:210: 109771-109771 被引量:9
标识
DOI:10.1016/j.petrol.2021.109771
摘要

Accurate real-time estimation of pore pressure is essential for the geomechanical analysis of wellbore stability. Conventional empirical methods may find it difficult to capture pore pressure trends, especially in the complex geological environments. In this study, a data-driven pore pressure estimation method is developed on the basis of hybrid partial least squares regression. This method, which combines empirical methods, comprised three stages: data preprocessing, depth series segmentation, and model establishment and switching. First, concerning the existence of outliers and noises, an outlier detection and wavelet filtering algorithm are introduced to obtain reliable model parameters. Additionally, Pearson correlation-analysis is employed to determine strongly correlated attributes with pore pressure in the data preprocessing stage. Afterward, an online principal component analysis similarity method is proposed for depth series segmentation, considering the varying drilling depth. Finally, a real-time data-driven pore pressure estimation model that integrates conventional empirical methods is established on the basis of partial least squares regression, and a model switching strategy is further developed and will be activated when performance deteriorates. The proposed method can be applied to a wide range of formations, and a real case study is conducted using actual data from a drilling site in Utah. The mean absolute error and root mean square error of the proposed method achieve 0.5128 and 0.8056 in the online condition, and achieved 1.4592 and 2.0100 in the offline condition, which are at least 45% less than those of other nine well-known methods. The results indicate the superior performance of our method on this well.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
栗子发布了新的文献求助10
1秒前
SmuA233发布了新的文献求助10
2秒前
葛二蛋发布了新的文献求助10
2秒前
3秒前
Hello应助阔达煎蛋采纳,获得10
4秒前
da白给da白的求助进行了留言
4秒前
小王发布了新的文献求助10
5秒前
7秒前
FashionBoy应助能干的茗采纳,获得10
8秒前
深情安青应助vvx采纳,获得10
8秒前
8秒前
nianyu发布了新的文献求助10
9秒前
9秒前
祈愿完成签到,获得积分20
12秒前
酷波er应助五花肉采纳,获得10
12秒前
脑洞疼应助dc123456采纳,获得10
13秒前
Starwalker应助move采纳,获得10
13秒前
清森发布了新的文献求助10
15秒前
15秒前
慕青应助soo采纳,获得10
16秒前
李健应助小王采纳,获得10
17秒前
郭骏怡发布了新的文献求助10
18秒前
linyalala发布了新的文献求助10
22秒前
猫了个喵完成签到,获得积分10
26秒前
清爽的雨竹完成签到 ,获得积分10
27秒前
ss发布了新的文献求助30
29秒前
botanist完成签到 ,获得积分10
30秒前
30秒前
Ava应助斯文的莫英采纳,获得10
30秒前
Akim应助linyalala采纳,获得10
30秒前
打打应助现代初珍采纳,获得10
30秒前
小遇完成签到 ,获得积分10
31秒前
勤奋语蕊完成签到,获得积分10
31秒前
box123发布了新的文献求助10
33秒前
大白包子李完成签到,获得积分10
33秒前
五花肉发布了新的文献求助10
35秒前
yyang完成签到 ,获得积分10
35秒前
35秒前
36秒前
36秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1800
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
Barge Mooring (Oilfield Seamanship Series Volume 6) 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3314062
求助须知:如何正确求助?哪些是违规求助? 2946490
关于积分的说明 8530274
捐赠科研通 2622160
什么是DOI,文献DOI怎么找? 1434341
科研通“疑难数据库(出版商)”最低求助积分说明 665242
邀请新用户注册赠送积分活动 650804