Decoding Color Visual Working Memory from EEG Signals Using Graph Convolutional Neural Networks

解码方法 计算机科学 工作记忆 脑电图 人工智能 卷积神经网络 模式识别(心理学) 图形 认知 编码(内存) 颜色编码 心理学 神经科学 算法 理论计算机科学
作者
Xiaowei Che,Yuanjie Zheng,Xin Chen,Sutao Song,Shouxin Li
出处
期刊:International Journal of Neural Systems [World Scientific]
卷期号:32 (02) 被引量:17
标识
DOI:10.1142/s0129065722500034
摘要

Color has an important role in object recognition and visual working memory (VWM). Decoding color VWM in the human brain is helpful to understand the mechanism of visual cognitive process and evaluate memory ability. Recently, several studies showed that color could be decoded from scalp electroencephalogram (EEG) signals during the encoding stage of VWM, which process visible information with strong neural coding. Whether color could be decoded from other VWM processing stages, especially the maintaining stage which processes invisible information, is still unknown. Here, we constructed an EEG color graph convolutional network model (ECo-GCN) to decode colors during different VWM stages. Based on graph convolutional networks, ECo-GCN considers the graph structure of EEG signals and may be more efficient in color decoding. We found that (1) decoding accuracies for colors during the encoding, early, and late maintaining stages were 81.58%, 79.36%, and 77.06%, respectively, exceeding those during the pre-stimuli stage (67.34%), and (2) the decoding accuracy during maintaining stage could predict participants' memory performance. The results suggest that EEG signals during the maintaining stage may be more sensitive than behavioral measurement to predict the VWM performance of human, and ECo-GCN provides an effective approach to explore human cognitive function.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
梧桐之泪完成签到 ,获得积分10
刚刚
1秒前
咩吖发布了新的文献求助10
1秒前
情怀应助笑点低的沛蓝采纳,获得10
1秒前
看文献也是技术活完成签到,获得积分10
1秒前
Amazing发布了新的文献求助20
2秒前
2秒前
2秒前
野性的盈发布了新的文献求助50
3秒前
3秒前
3秒前
3秒前
4秒前
4秒前
4秒前
杨少发布了新的文献求助10
5秒前
5秒前
Ashely发布了新的文献求助10
6秒前
SYanan完成签到 ,获得积分10
6秒前
胡浩发布了新的文献求助10
6秒前
科研通AI2S应助hhj02采纳,获得10
8秒前
点点完成签到 ,获得积分10
8秒前
星辰大海应助执生采纳,获得10
9秒前
9秒前
9秒前
9秒前
哔哔完成签到,获得积分10
9秒前
10秒前
安好发布了新的文献求助10
10秒前
yyyfff应助1234采纳,获得10
10秒前
keyantong发布了新的文献求助10
10秒前
10秒前
英俊的铭应助小哈采纳,获得10
10秒前
11秒前
熊小生发布了新的文献求助10
11秒前
11秒前
无花果应助胡浩采纳,获得10
11秒前
12秒前
幸福发布了新的文献求助10
12秒前
13秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3476637
求助须知:如何正确求助?哪些是违规求助? 3068229
关于积分的说明 9107100
捐赠科研通 2759749
什么是DOI,文献DOI怎么找? 1514256
邀请新用户注册赠送积分活动 700121
科研通“疑难数据库(出版商)”最低求助积分说明 699312