已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Concept drift and cross-device behavior: Challenges and implications for effective android malware detection

时间戳 Android(操作系统) 计算机科学 恶意软件 Android恶意软件 概念漂移 数据挖掘 机器学习 实时计算 计算机安全 数据流挖掘 操作系统
作者
Alejandro Guerra-Manzanares,Marcin Luckner,Hayretdin Bahşi
出处
期刊:Computers & Security [Elsevier]
卷期号:120: 102757-102757 被引量:14
标识
DOI:10.1016/j.cose.2022.102757
摘要

The large body of Android malware research has demonstrated that machine learning methods can provide high performance for detecting Android malware. However, the vast majority of studies underestimate the evolving nature of the threat landscape, which requires the creation of a model life-cycle to ensure effective continuous detection in real-world settings over time. In this study, we modeled the concept drift issue of Android malware detection, encompassing the years between 2011 and 2018, using dynamic feature sets (i.e., system calls) derived from Android apps. The relevant studies in the literature have not focused on the timestamp selection approach and its critical impact on effective drift modeling. We evaluated and compared distinct timestamp alternatives. Our experimental results show that a widely used timestamp in the literature yields poor results over time and that enhanced concept drift handling is achieved when an app internal timestamp was used. Additionally, this study sheds light on the usage of distinct data sources and their impact on concept drift modeling. We identified that dynamic features obtained for individual apps from different data sources (i.e., emulator and real device) show significant differences that can distort the modeling results. Therefore, the data sources should be considered and their fusion preferably avoided while creating the training and testing data sets. Our analysis is supported using a global interpretation method to comprehend and characterize the evolution of Android apps throughout the years from a data source-related perspective.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
赘婿应助花酒采纳,获得10
刚刚
mendy完成签到,获得积分10
1秒前
睡一天懒觉完成签到,获得积分10
1秒前
1秒前
原野小年完成签到,获得积分10
2秒前
wang5945完成签到 ,获得积分10
3秒前
jianning完成签到,获得积分10
4秒前
197819782009完成签到 ,获得积分0
4秒前
俊逸的振家关注了科研通微信公众号
9秒前
10秒前
11秒前
prince666关注了科研通微信公众号
12秒前
完美世界应助原野小年采纳,获得10
13秒前
13秒前
哈哈哈发布了新的文献求助10
15秒前
可爱的函函应助CMRwatermelon采纳,获得10
15秒前
lizeyu完成签到,获得积分10
16秒前
liuweiwei完成签到 ,获得积分10
19秒前
微风打了烊完成签到 ,获得积分10
19秒前
笨笨的发布了新的文献求助10
19秒前
hahahan完成签到 ,获得积分10
21秒前
22秒前
巴巴bow完成签到 ,获得积分10
23秒前
ShowMaker应助LeoJun采纳,获得50
24秒前
花酒发布了新的文献求助10
27秒前
27秒前
28秒前
GlockieZhao完成签到,获得积分10
29秒前
30秒前
30秒前
Gentlegirl发布了新的文献求助10
30秒前
zino完成签到,获得积分10
32秒前
33秒前
33秒前
科研猫头鹰完成签到,获得积分10
34秒前
香蕉觅云应助沉默哈密瓜采纳,获得10
35秒前
CMRwatermelon发布了新的文献求助10
35秒前
大龙哥886发布了新的文献求助10
37秒前
rrr关注了科研通微信公众号
37秒前
38秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3150414
求助须知:如何正确求助?哪些是违规求助? 2801747
关于积分的说明 7845691
捐赠科研通 2459167
什么是DOI,文献DOI怎么找? 1309085
科研通“疑难数据库(出版商)”最低求助积分说明 628634
版权声明 601727