时间戳
Android(操作系统)
计算机科学
恶意软件
Android恶意软件
概念漂移
数据挖掘
机器学习
实时计算
计算机安全
数据流挖掘
操作系统
作者
Alejandro Guerra-Manzanares,Marcin Luckner,Hayretdin Bahşi
标识
DOI:10.1016/j.cose.2022.102757
摘要
The large body of Android malware research has demonstrated that machine learning methods can provide high performance for detecting Android malware. However, the vast majority of studies underestimate the evolving nature of the threat landscape, which requires the creation of a model life-cycle to ensure effective continuous detection in real-world settings over time. In this study, we modeled the concept drift issue of Android malware detection, encompassing the years between 2011 and 2018, using dynamic feature sets (i.e., system calls) derived from Android apps. The relevant studies in the literature have not focused on the timestamp selection approach and its critical impact on effective drift modeling. We evaluated and compared distinct timestamp alternatives. Our experimental results show that a widely used timestamp in the literature yields poor results over time and that enhanced concept drift handling is achieved when an app internal timestamp was used. Additionally, this study sheds light on the usage of distinct data sources and their impact on concept drift modeling. We identified that dynamic features obtained for individual apps from different data sources (i.e., emulator and real device) show significant differences that can distort the modeling results. Therefore, the data sources should be considered and their fusion preferably avoided while creating the training and testing data sets. Our analysis is supported using a global interpretation method to comprehend and characterize the evolution of Android apps throughout the years from a data source-related perspective.
科研通智能强力驱动
Strongly Powered by AbleSci AI