Concept drift and cross-device behavior: Challenges and implications for effective android malware detection

时间戳 Android(操作系统) 计算机科学 恶意软件 Android恶意软件 概念漂移 数据挖掘 机器学习 实时计算 计算机安全 数据流挖掘 操作系统
作者
Alejandro Guerra-Manzanares,Marcin Luckner,Hayretdin Bahşi
出处
期刊:Computers & Security [Elsevier]
卷期号:120: 102757-102757 被引量:14
标识
DOI:10.1016/j.cose.2022.102757
摘要

The large body of Android malware research has demonstrated that machine learning methods can provide high performance for detecting Android malware. However, the vast majority of studies underestimate the evolving nature of the threat landscape, which requires the creation of a model life-cycle to ensure effective continuous detection in real-world settings over time. In this study, we modeled the concept drift issue of Android malware detection, encompassing the years between 2011 and 2018, using dynamic feature sets (i.e., system calls) derived from Android apps. The relevant studies in the literature have not focused on the timestamp selection approach and its critical impact on effective drift modeling. We evaluated and compared distinct timestamp alternatives. Our experimental results show that a widely used timestamp in the literature yields poor results over time and that enhanced concept drift handling is achieved when an app internal timestamp was used. Additionally, this study sheds light on the usage of distinct data sources and their impact on concept drift modeling. We identified that dynamic features obtained for individual apps from different data sources (i.e., emulator and real device) show significant differences that can distort the modeling results. Therefore, the data sources should be considered and their fusion preferably avoided while creating the training and testing data sets. Our analysis is supported using a global interpretation method to comprehend and characterize the evolution of Android apps throughout the years from a data source-related perspective.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
呼啦啦发布了新的文献求助10
1秒前
fantastic发布了新的文献求助10
1秒前
FAN完成签到,获得积分10
2秒前
说话的月亮完成签到,获得积分10
2秒前
李佳璐完成签到 ,获得积分20
2秒前
3秒前
13ing完成签到,获得积分10
4秒前
4秒前
Akim应助负责的方盒采纳,获得30
5秒前
量子星尘发布了新的文献求助10
5秒前
5秒前
Kenny完成签到,获得积分10
5秒前
7秒前
123456hhh完成签到,获得积分10
8秒前
呼啦啦完成签到,获得积分20
8秒前
美味吐司完成签到,获得积分10
8秒前
9秒前
10秒前
无辜凤凰发布了新的文献求助10
10秒前
悄悄.完成签到 ,获得积分10
10秒前
10秒前
寒冬完成签到,获得积分10
13秒前
陌上花开发布了新的文献求助10
14秒前
14秒前
14秒前
斯文败类应助贝湾采纳,获得10
15秒前
年轻薯片完成签到 ,获得积分10
18秒前
超级苹果完成签到 ,获得积分10
18秒前
斯琪欣完成签到,获得积分10
19秒前
TL发布了新的文献求助10
19秒前
李西西发布了新的文献求助10
20秒前
阿白发布了新的文献求助10
21秒前
21秒前
量子星尘发布了新的文献求助10
22秒前
24秒前
25秒前
完美的烙完成签到,获得积分20
26秒前
26秒前
卜乌完成签到,获得积分10
27秒前
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Item Response Theory 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 921
Identifying dimensions of interest to support learning in disengaged students: the MINE project 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5428202
求助须知:如何正确求助?哪些是违规求助? 4542308
关于积分的说明 14179543
捐赠科研通 4459846
什么是DOI,文献DOI怎么找? 2445511
邀请新用户注册赠送积分活动 1436703
关于科研通互助平台的介绍 1413878