Cooperative task assignment in spatial crowdsourcing via multi-agent deep reinforcement learning

计算机科学 众包 强化学习 任务(项目管理) 互联网 人工智能 钥匙(锁) 功能(生物学) 人机交互 机器学习 万维网 计算机安全 进化生物学 生物 经济 管理
作者
Pengcheng Zhao,Xiang Li,Shang Gao,Xiaohui Wei
出处
期刊:Journal of Systems Architecture [Elsevier]
卷期号:128: 102551-102551 被引量:11
标识
DOI:10.1016/j.sysarc.2022.102551
摘要

With the rapid development of mobile Internet, spatial crowdsourcing (SC) has become an emerging paradigm with many applications. As a key challenge in SC, the problem of task assignment has attracted extensive research. However, most previous work focus on the single mode setting where cooperation among workers is either allowed or prohibited. Moreover, only short-term benefit of either workers or requesters is considered separately. To address these issues, we first propose a new spatial crowdsourcing scenario that permits cooperation with no mandate among workers and tasks. Furthermore, we propose a multi-agent deep reinforcement learning (MADRL) solution for SC. Specifically, we extend the Advantage Actor–Critic (A2C) algorithm to multi-agent settings, and design a reward function that considers both local and global return. Through the game between agents, we generate a task assignment scheme that considers both workers’ and requesters’ long-term benefit. In order to improve the performance of our model, we further introduce the attention mechanism to guide information sharing between agents. We use simulations to conduct experimental evaluation on both synthetic and real-world datasets. Experimental results show that our proposed method outperforms other state-of-the-art task assignment algorithms in terms of worker profitability rate and task completion rate.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
超帅听枫发布了新的文献求助10
2秒前
沉静WT完成签到 ,获得积分10
2秒前
flysky120发布了新的文献求助10
2秒前
研友_VZG7GZ应助qiuqiu120234978采纳,获得10
2秒前
深情安青应助书生采纳,获得10
3秒前
4秒前
5秒前
Owen应助整齐凌萱采纳,获得10
5秒前
牛奶面包发布了新的文献求助10
6秒前
研友_VZG7GZ应助Lucky采纳,获得10
6秒前
8秒前
9秒前
10秒前
11秒前
11秒前
Singularity发布了新的文献求助10
12秒前
勤劳的靖儿完成签到,获得积分10
13秒前
13秒前
cc发布了新的文献求助10
14秒前
14秒前
dalin发布了新的文献求助10
14秒前
书生发布了新的文献求助10
15秒前
lanmin完成签到,获得积分10
16秒前
16秒前
科研通AI2S应助一所悬命采纳,获得10
17秒前
17秒前
整齐凌萱发布了新的文献求助10
17秒前
18秒前
keke发布了新的文献求助10
18秒前
小蕾同学完成签到,获得积分10
20秒前
咚咚发布了新的文献求助10
21秒前
mfy发布了新的文献求助10
21秒前
DR完成签到,获得积分10
22秒前
无花果应助糟糕的花卷采纳,获得10
22秒前
22秒前
迪丽盐巴完成签到,获得积分10
23秒前
23秒前
jingtan发布了新的文献求助10
24秒前
Lucky发布了新的文献求助10
24秒前
fiona7777完成签到 ,获得积分10
24秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3139127
求助须知:如何正确求助?哪些是违规求助? 2790013
关于积分的说明 7793363
捐赠科研通 2446416
什么是DOI,文献DOI怎么找? 1301093
科研通“疑难数据库(出版商)”最低求助积分说明 626106
版权声明 601102