Integrated generative networks embedded with ensemble classifiers for fault detection and diagnosis under small and imbalanced data of building air condition system

暖通空调 计算机科学 断层(地质) 故障检测与隔离 数据驱动 数据挖掘 分类器(UML) 生成语法 人工智能 机器学习 工程类 空调 机械工程 地震学 执行机构 地质学
作者
Jianxin Zhang,Zhengfei Li,Huanxin Chen,Hengda Cheng,Lu Xing,Yuzhou Wang,Li Zhang
出处
期刊:Energy and Buildings [Elsevier BV]
卷期号:268: 112207-112207
标识
DOI:10.1016/j.enbuild.2022.112207
摘要

• A combined generative network is built based on VAE and WGAN-GP. • The ensemble classifiers are embedded into generative network for FDD. • A detailed comparison between SMOTE and generative network method is discussed. Faults in building Heating, Ventilation, and Air-condition (HVAC) system create an uncomfortable indoor environment and cause energy waste. The data-driven method has been widely applied for Fault Detection and Diagnosis (FDD) in the complex building HVAC system. This method relies on the availability of many fault data which is difficult to collect. This makes it quite challenging to apply the data-driven methods for the FDD of the HVAC system. Thus, a novel data-driven FDD method that only utilizes small fault data collected from a Variable Refrigerant Flow air condition system has been proposed. Under different conditions, the fault and normal data are collected in an enthalpy difference laboratory to create small and imbalanced data. A generative network is developed by combining Wasserstein Generative Adversarial Network with Gradient Penalty and Variational Auto-Encoder. To improve the FDD classifier’s accuracy and to train an end-to-end network model using small and imbalanced data, two ensemble classifiers are embedded into the generative network. The dataset includes normal and fault data have been applied to train the modified generative network, and two ensemble classifiers are used to detect and diagnose the fault, respectively. The performance indexes show that the proposed method is much better than the SMOTE-based methods in almost all training groups. Besides, the comparison between the proposed method and generative network with a single classifier indicates that the ensemble classifiers can improve the F1-score of fault detection and the accuracy of fault diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
2秒前
61414完成签到,获得积分10
2秒前
wjx发布了新的文献求助10
3秒前
3秒前
Lewis完成签到,获得积分10
3秒前
科研三井泽完成签到,获得积分10
3秒前
chu完成签到,获得积分20
3秒前
nancylan应助hnxxangel采纳,获得10
3秒前
Hello应助hnxxangel采纳,获得10
3秒前
我是老大应助hnxxangel采纳,获得10
3秒前
啊七发布了新的文献求助10
3秒前
斯文败类应助hnxxangel采纳,获得10
3秒前
Hello应助hnxxangel采纳,获得10
3秒前
womodou发布了新的文献求助10
3秒前
gsgg完成签到 ,获得积分10
3秒前
syjjj发布了新的文献求助10
4秒前
lmhzxy1314发布了新的文献求助10
4秒前
4秒前
乐乐应助海藻采纳,获得10
4秒前
阔达的访风应助宋立采纳,获得10
4秒前
武明进完成签到,获得积分10
4秒前
5秒前
5秒前
zqq完成签到,获得积分10
5秒前
小吴发布了新的文献求助10
6秒前
刘六完成签到,获得积分10
6秒前
慕青应助小小二采纳,获得30
6秒前
唯喂完成签到,获得积分10
7秒前
7秒前
JamesPei应助樱花慕斯采纳,获得10
7秒前
chen7完成签到,获得积分10
7秒前
5430完成签到,获得积分10
7秒前
tc完成签到,获得积分10
7秒前
8秒前
8秒前
8秒前
上官若男应助Icebear采纳,获得50
8秒前
绾绾发布了新的文献求助10
8秒前
所所应助负责的太兰采纳,获得10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Constitutional and Administrative Law 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5261307
求助须知:如何正确求助?哪些是违规求助? 4422429
关于积分的说明 13766330
捐赠科研通 4296949
什么是DOI,文献DOI怎么找? 2357579
邀请新用户注册赠送积分活动 1353993
关于科研通互助平台的介绍 1315165