Integrated generative networks embedded with ensemble classifiers for fault detection and diagnosis under small and imbalanced data of building air condition system

暖通空调 计算机科学 断层(地质) 故障检测与隔离 数据驱动 数据挖掘 分类器(UML) 生成语法 人工智能 机器学习 工程类 空调 机械工程 地震学 执行机构 地质学
作者
Jianxin Zhang,Zhengfei Li,Huanxin Chen,Hengda Cheng,Lu Xing,Yuzhou Wang,Li Zhang
出处
期刊:Energy and Buildings [Elsevier]
卷期号:268: 112207-112207
标识
DOI:10.1016/j.enbuild.2022.112207
摘要

• A combined generative network is built based on VAE and WGAN-GP. • The ensemble classifiers are embedded into generative network for FDD. • A detailed comparison between SMOTE and generative network method is discussed. Faults in building Heating, Ventilation, and Air-condition (HVAC) system create an uncomfortable indoor environment and cause energy waste. The data-driven method has been widely applied for Fault Detection and Diagnosis (FDD) in the complex building HVAC system. This method relies on the availability of many fault data which is difficult to collect. This makes it quite challenging to apply the data-driven methods for the FDD of the HVAC system. Thus, a novel data-driven FDD method that only utilizes small fault data collected from a Variable Refrigerant Flow air condition system has been proposed. Under different conditions, the fault and normal data are collected in an enthalpy difference laboratory to create small and imbalanced data. A generative network is developed by combining Wasserstein Generative Adversarial Network with Gradient Penalty and Variational Auto-Encoder. To improve the FDD classifier’s accuracy and to train an end-to-end network model using small and imbalanced data, two ensemble classifiers are embedded into the generative network. The dataset includes normal and fault data have been applied to train the modified generative network, and two ensemble classifiers are used to detect and diagnose the fault, respectively. The performance indexes show that the proposed method is much better than the SMOTE-based methods in almost all training groups. Besides, the comparison between the proposed method and generative network with a single classifier indicates that the ensemble classifiers can improve the F1-score of fault detection and the accuracy of fault diagnosis.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CarryLJR发布了新的文献求助10
刚刚
NexusExplorer应助默默的元冬采纳,获得10
1秒前
2秒前
研友_LMo56Z发布了新的文献求助10
2秒前
叶黄戍发布了新的文献求助10
3秒前
共享精神应助ershui采纳,获得10
4秒前
英姑应助令狐采纳,获得10
4秒前
菜鸟果果完成签到,获得积分10
4秒前
开心逊发布了新的文献求助10
4秒前
FashionBoy应助b3lyp采纳,获得10
5秒前
蔷薇完成签到,获得积分10
5秒前
渔泽发布了新的文献求助10
5秒前
刘璐完成签到,获得积分10
5秒前
量子星尘发布了新的文献求助10
7秒前
养蚊子完成签到,获得积分10
7秒前
彩彩完成签到,获得积分20
8秒前
8秒前
科研通AI6应助gxc采纳,获得10
8秒前
wen发布了新的文献求助10
10秒前
10秒前
bubble完成签到,获得积分10
10秒前
11秒前
F7erxl发布了新的文献求助10
11秒前
完美世界应助MAFAKETHS采纳,获得10
13秒前
轻松听寒完成签到,获得积分10
13秒前
15秒前
16秒前
16秒前
pick_up发布了新的文献求助10
16秒前
HHHH完成签到,获得积分10
16秒前
寻道图强举报昂啵啵求助涉嫌违规
17秒前
17秒前
17秒前
funnyzpc完成签到,获得积分10
17秒前
17秒前
17秒前
研友_VZG7GZ应助体贴菠萝采纳,获得10
18秒前
英俊的铭应助渔泽采纳,获得10
18秒前
18秒前
Ava应助Jasoncheng采纳,获得10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5649626
求助须知:如何正确求助?哪些是违规求助? 4778871
关于积分的说明 15049592
捐赠科研通 4808672
什么是DOI,文献DOI怎么找? 2571696
邀请新用户注册赠送积分活动 1528088
关于科研通互助平台的介绍 1486851