Integrated generative networks embedded with ensemble classifiers for fault detection and diagnosis under small and imbalanced data of building air condition system

暖通空调 计算机科学 断层(地质) 故障检测与隔离 数据驱动 数据挖掘 分类器(UML) 生成语法 人工智能 机器学习 工程类 空调 机械工程 地震学 执行机构 地质学
作者
Jianxin Zhang,Zhengfei Li,Huanxin Chen,Hengda Cheng,Lu Xing,Yuzhou Wang,Li Zhang
出处
期刊:Energy and Buildings [Elsevier]
卷期号:268: 112207-112207
标识
DOI:10.1016/j.enbuild.2022.112207
摘要

• A combined generative network is built based on VAE and WGAN-GP. • The ensemble classifiers are embedded into generative network for FDD. • A detailed comparison between SMOTE and generative network method is discussed. Faults in building Heating, Ventilation, and Air-condition (HVAC) system create an uncomfortable indoor environment and cause energy waste. The data-driven method has been widely applied for Fault Detection and Diagnosis (FDD) in the complex building HVAC system. This method relies on the availability of many fault data which is difficult to collect. This makes it quite challenging to apply the data-driven methods for the FDD of the HVAC system. Thus, a novel data-driven FDD method that only utilizes small fault data collected from a Variable Refrigerant Flow air condition system has been proposed. Under different conditions, the fault and normal data are collected in an enthalpy difference laboratory to create small and imbalanced data. A generative network is developed by combining Wasserstein Generative Adversarial Network with Gradient Penalty and Variational Auto-Encoder. To improve the FDD classifier’s accuracy and to train an end-to-end network model using small and imbalanced data, two ensemble classifiers are embedded into the generative network. The dataset includes normal and fault data have been applied to train the modified generative network, and two ensemble classifiers are used to detect and diagnose the fault, respectively. The performance indexes show that the proposed method is much better than the SMOTE-based methods in almost all training groups. Besides, the comparison between the proposed method and generative network with a single classifier indicates that the ensemble classifiers can improve the F1-score of fault detection and the accuracy of fault diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CICI发布了新的文献求助10
刚刚
fu发布了新的文献求助10
刚刚
青雨完成签到,获得积分10
刚刚
jie发布了新的文献求助10
1秒前
板凳发布了新的文献求助10
1秒前
pangmengxuan发布了新的文献求助10
1秒前
1221发布了新的文献求助10
2秒前
2秒前
李白白白发布了新的文献求助10
3秒前
3秒前
3秒前
CICI完成签到,获得积分10
5秒前
俊逸的凝珍完成签到,获得积分10
6秒前
6秒前
天使小五哥应助易壹采纳,获得10
6秒前
无花果应助hhhh采纳,获得10
7秒前
7秒前
7秒前
jie完成签到,获得积分10
7秒前
ye完成签到,获得积分20
8秒前
青雨发布了新的文献求助20
8秒前
9秒前
甜馨完成签到,获得积分10
10秒前
无名之辈发布了新的文献求助10
10秒前
10秒前
Sitong发布了新的文献求助10
11秒前
ZQP发布了新的文献求助10
11秒前
chen发布了新的文献求助10
12秒前
12秒前
SAXA完成签到 ,获得积分10
12秒前
13秒前
13秒前
蔡夜安完成签到 ,获得积分10
13秒前
桐桐应助super chan采纳,获得10
14秒前
15秒前
15秒前
董行健发布了新的文献求助30
16秒前
17秒前
所所应助香蕉雅香采纳,获得10
17秒前
俭朴的皮卡丘完成签到 ,获得积分10
17秒前
高分求助中
Sustainability in ’Tides Chemistry 2000
The ACS Guide to Scholarly Communication 2000
Studien zur Ideengeschichte der Gesetzgebung 1000
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Threaded Harmony: A Sustainable Approach to Fashion 810
Pharmacogenomics: Applications to Patient Care, Third Edition 800
Gerard de Lairesse : an artist between stage and studio 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3075498
求助须知:如何正确求助?哪些是违规求助? 2728589
关于积分的说明 7505148
捐赠科研通 2376734
什么是DOI,文献DOI怎么找? 1260264
科研通“疑难数据库(出版商)”最低求助积分说明 610928
版权声明 597149