亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Integrated generative networks embedded with ensemble classifiers for fault detection and diagnosis under small and imbalanced data of building air condition system

暖通空调 计算机科学 断层(地质) 故障检测与隔离 数据驱动 数据挖掘 分类器(UML) 生成语法 人工智能 机器学习 工程类 空调 机械工程 地质学 地震学 执行机构
作者
Jianxin Zhang,Zhengfei Li,Huanxin Chen,Hengda Cheng,Lu Xing,Yuzhou Wang,Li Zhang
出处
期刊:Energy and Buildings [Elsevier]
卷期号:268: 112207-112207
标识
DOI:10.1016/j.enbuild.2022.112207
摘要

• A combined generative network is built based on VAE and WGAN-GP. • The ensemble classifiers are embedded into generative network for FDD. • A detailed comparison between SMOTE and generative network method is discussed. Faults in building Heating, Ventilation, and Air-condition (HVAC) system create an uncomfortable indoor environment and cause energy waste. The data-driven method has been widely applied for Fault Detection and Diagnosis (FDD) in the complex building HVAC system. This method relies on the availability of many fault data which is difficult to collect. This makes it quite challenging to apply the data-driven methods for the FDD of the HVAC system. Thus, a novel data-driven FDD method that only utilizes small fault data collected from a Variable Refrigerant Flow air condition system has been proposed. Under different conditions, the fault and normal data are collected in an enthalpy difference laboratory to create small and imbalanced data. A generative network is developed by combining Wasserstein Generative Adversarial Network with Gradient Penalty and Variational Auto-Encoder. To improve the FDD classifier’s accuracy and to train an end-to-end network model using small and imbalanced data, two ensemble classifiers are embedded into the generative network. The dataset includes normal and fault data have been applied to train the modified generative network, and two ensemble classifiers are used to detect and diagnose the fault, respectively. The performance indexes show that the proposed method is much better than the SMOTE-based methods in almost all training groups. Besides, the comparison between the proposed method and generative network with a single classifier indicates that the ensemble classifiers can improve the F1-score of fault detection and the accuracy of fault diagnosis.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
科研通AI6应助邓润杰采纳,获得10
5秒前
FashionBoy应助傻傻的修洁采纳,获得10
7秒前
情怀应助Radiance采纳,获得10
11秒前
wangxw完成签到,获得积分10
12秒前
14秒前
科研通AI2S应助傻傻的修洁采纳,获得10
14秒前
1033524682发布了新的文献求助30
18秒前
18秒前
neao完成签到 ,获得积分10
21秒前
Lucas应助邓润杰采纳,获得10
22秒前
Radiance发布了新的文献求助10
24秒前
Ava应助傻傻的修洁采纳,获得10
30秒前
Radiance完成签到,获得积分10
32秒前
ceeray23发布了新的文献求助20
32秒前
丘比特应助邓润杰采纳,获得10
33秒前
1033524682完成签到,获得积分10
34秒前
成就觅海完成签到 ,获得积分10
35秒前
窝不想写论文完成签到 ,获得积分10
38秒前
41秒前
42秒前
科研通AI6应助Li采纳,获得50
43秒前
小马甲应助君寻采纳,获得10
43秒前
44秒前
44秒前
44秒前
传奇3应助邓润杰采纳,获得10
45秒前
sandy发布了新的文献求助10
49秒前
科研通AI6应助MIMI采纳,获得10
50秒前
科研通AI6应助邓润杰采纳,获得10
53秒前
在水一方应助傻傻的修洁采纳,获得10
57秒前
科研通AI6应助邓润杰采纳,获得10
1分钟前
Akaza完成签到 ,获得积分10
1分钟前
1分钟前
高兴宝贝完成签到 ,获得积分10
1分钟前
打打应助傻傻的修洁采纳,获得10
1分钟前
脑洞疼应助munchys采纳,获得10
1分钟前
mmyhn发布了新的文献求助10
1分钟前
达西苏发布了新的文献求助30
1分钟前
科研通AI6应助邓润杰采纳,获得10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 640
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573343
求助须知:如何正确求助?哪些是违规求助? 4659427
关于积分的说明 14724572
捐赠科研通 4599247
什么是DOI,文献DOI怎么找? 2524237
邀请新用户注册赠送积分活动 1494711
关于科研通互助平台的介绍 1464737