亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Integrated generative networks embedded with ensemble classifiers for fault detection and diagnosis under small and imbalanced data of building air condition system

暖通空调 计算机科学 断层(地质) 故障检测与隔离 数据驱动 数据挖掘 分类器(UML) 生成语法 人工智能 机器学习 工程类 空调 机械工程 地震学 执行机构 地质学
作者
Jianxin Zhang,Zhengfei Li,Huanxin Chen,Hengda Cheng,Lu Xing,Yuzhou Wang,Li Zhang
出处
期刊:Energy and Buildings [Elsevier]
卷期号:268: 112207-112207
标识
DOI:10.1016/j.enbuild.2022.112207
摘要

• A combined generative network is built based on VAE and WGAN-GP. • The ensemble classifiers are embedded into generative network for FDD. • A detailed comparison between SMOTE and generative network method is discussed. Faults in building Heating, Ventilation, and Air-condition (HVAC) system create an uncomfortable indoor environment and cause energy waste. The data-driven method has been widely applied for Fault Detection and Diagnosis (FDD) in the complex building HVAC system. This method relies on the availability of many fault data which is difficult to collect. This makes it quite challenging to apply the data-driven methods for the FDD of the HVAC system. Thus, a novel data-driven FDD method that only utilizes small fault data collected from a Variable Refrigerant Flow air condition system has been proposed. Under different conditions, the fault and normal data are collected in an enthalpy difference laboratory to create small and imbalanced data. A generative network is developed by combining Wasserstein Generative Adversarial Network with Gradient Penalty and Variational Auto-Encoder. To improve the FDD classifier’s accuracy and to train an end-to-end network model using small and imbalanced data, two ensemble classifiers are embedded into the generative network. The dataset includes normal and fault data have been applied to train the modified generative network, and two ensemble classifiers are used to detect and diagnose the fault, respectively. The performance indexes show that the proposed method is much better than the SMOTE-based methods in almost all training groups. Besides, the comparison between the proposed method and generative network with a single classifier indicates that the ensemble classifiers can improve the F1-score of fault detection and the accuracy of fault diagnosis.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
7秒前
flyinthesky完成签到,获得积分10
8秒前
111发布了新的文献求助10
11秒前
xmsyq完成签到 ,获得积分10
16秒前
CipherSage应助杨sq采纳,获得10
16秒前
科研通AI6应助111采纳,获得10
20秒前
21秒前
555完成签到,获得积分10
29秒前
张晓祁完成签到,获得积分10
29秒前
科研通AI6应助Re采纳,获得10
31秒前
yueying完成签到,获得积分10
39秒前
蛋白激酶完成签到,获得积分10
47秒前
53秒前
53秒前
杨sq完成签到 ,获得积分10
54秒前
OFish完成签到,获得积分10
1分钟前
HUO完成签到 ,获得积分10
1分钟前
1分钟前
迷人紫萍发布了新的文献求助10
1分钟前
ly完成签到,获得积分10
1分钟前
丘比特应助liz采纳,获得10
1分钟前
学术小白发布了新的文献求助10
1分钟前
机智觅柔完成签到,获得积分10
2分钟前
2分钟前
机智觅柔发布了新的文献求助10
2分钟前
moumou完成签到 ,获得积分10
2分钟前
浮游应助小楼初晴采纳,获得10
2分钟前
LYL完成签到,获得积分10
2分钟前
啦啦啦啦啦完成签到 ,获得积分10
2分钟前
小楼初晴完成签到,获得积分10
2分钟前
顺利大门发布了新的文献求助210
2分钟前
李洛华哥发布了新的文献求助10
2分钟前
2分钟前
小点点完成签到,获得积分10
2分钟前
2分钟前
2分钟前
浮游应助shui采纳,获得10
3分钟前
洁净的钢笔完成签到 ,获得积分10
3分钟前
吉祥高趙完成签到 ,获得积分10
3分钟前
薛建伟完成签到 ,获得积分10
3分钟前
高分求助中
From Victimization to Aggression 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
小学科学课程与教学 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5644589
求助须知:如何正确求助?哪些是违规求助? 4764650
关于积分的说明 15025321
捐赠科研通 4802952
什么是DOI,文献DOI怎么找? 2567771
邀请新用户注册赠送积分活动 1525410
关于科研通互助平台的介绍 1484895