Integrated generative networks embedded with ensemble classifiers for fault detection and diagnosis under small and imbalanced data of building air condition system

暖通空调 计算机科学 断层(地质) 故障检测与隔离 数据驱动 数据挖掘 分类器(UML) 生成语法 人工智能 机器学习 工程类 空调 机械工程 地震学 执行机构 地质学
作者
Jianxin Zhang,Zhengfei Li,Huanxin Chen,Hengda Cheng,Lu Xing,Yuzhou Wang,Li Zhang
出处
期刊:Energy and Buildings [Elsevier]
卷期号:268: 112207-112207
标识
DOI:10.1016/j.enbuild.2022.112207
摘要

• A combined generative network is built based on VAE and WGAN-GP. • The ensemble classifiers are embedded into generative network for FDD. • A detailed comparison between SMOTE and generative network method is discussed. Faults in building Heating, Ventilation, and Air-condition (HVAC) system create an uncomfortable indoor environment and cause energy waste. The data-driven method has been widely applied for Fault Detection and Diagnosis (FDD) in the complex building HVAC system. This method relies on the availability of many fault data which is difficult to collect. This makes it quite challenging to apply the data-driven methods for the FDD of the HVAC system. Thus, a novel data-driven FDD method that only utilizes small fault data collected from a Variable Refrigerant Flow air condition system has been proposed. Under different conditions, the fault and normal data are collected in an enthalpy difference laboratory to create small and imbalanced data. A generative network is developed by combining Wasserstein Generative Adversarial Network with Gradient Penalty and Variational Auto-Encoder. To improve the FDD classifier’s accuracy and to train an end-to-end network model using small and imbalanced data, two ensemble classifiers are embedded into the generative network. The dataset includes normal and fault data have been applied to train the modified generative network, and two ensemble classifiers are used to detect and diagnose the fault, respectively. The performance indexes show that the proposed method is much better than the SMOTE-based methods in almost all training groups. Besides, the comparison between the proposed method and generative network with a single classifier indicates that the ensemble classifiers can improve the F1-score of fault detection and the accuracy of fault diagnosis.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
量子星尘发布了新的文献求助10
2秒前
量子星尘发布了新的文献求助10
2秒前
bird发布了新的文献求助10
2秒前
诺曦发布了新的文献求助10
3秒前
meimei发布了新的文献求助10
3秒前
亚尔完成签到 ,获得积分10
3秒前
WuZhiqin发布了新的文献求助10
4秒前
4秒前
ZCYBEYOND完成签到 ,获得积分10
4秒前
bkagyin应助爱吃蒸蛋采纳,获得10
5秒前
1235354365434发布了新的文献求助10
6秒前
7秒前
搜集达人应助憨憨采纳,获得10
7秒前
疯狂大野驴完成签到,获得积分10
9秒前
追寻的烤鸡完成签到,获得积分10
9秒前
英俊的铭应助咻咻采纳,获得10
9秒前
wjwqz完成签到,获得积分10
9秒前
10秒前
10秒前
欣慰海燕完成签到,获得积分10
10秒前
chyang发布了新的文献求助10
11秒前
14秒前
dengdeng发布了新的文献求助10
14秒前
打打应助雷雷采纳,获得10
14秒前
14秒前
量子星尘发布了新的文献求助10
15秒前
15秒前
爱吃蒸蛋发布了新的文献求助10
16秒前
迷路的夏之完成签到,获得积分10
17秒前
18秒前
李土豆完成签到,获得积分10
18秒前
上官若男应助张佳宁采纳,获得10
18秒前
19秒前
米米发布了新的文献求助10
20秒前
JamesPei应助lcj1014采纳,获得10
20秒前
20秒前
Owen应助哈哈哈哈采纳,获得10
21秒前
22秒前
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5778406
求助须知:如何正确求助?哪些是违规求助? 5640715
关于积分的说明 15449091
捐赠科研通 4910116
什么是DOI,文献DOI怎么找? 2642275
邀请新用户注册赠送积分活动 1590187
关于科研通互助平台的介绍 1544544