A novel machine learning model to predict respiratory failure and invasive mechanical ventilation in critically ill patients suffering from COVID-19

机械通风 医学 队列 病危 2019年冠状病毒病(COVID-19) 机器学习 呼吸衰竭 人工智能 重症监护医学 计算机科学 急诊医学 内科学 传染病(医学专业) 疾病
作者
Itai Bendavid,Liran Statlender,Leonid Shvartser,Shmuel Teppler,Roy Azullay,Rotem Sapir,Pierre Singer
出处
期刊:Scientific Reports [Nature Portfolio]
卷期号:12 (1) 被引量:31
标识
DOI:10.1038/s41598-022-14758-x
摘要

Abstract In hypoxemic patients at risk for developing respiratory failure, the decision to initiate invasive mechanical ventilation (IMV) may be extremely difficult, even more so among patients suffering from COVID-19. Delayed recognition of respiratory failure may translate into poor outcomes, emphasizing the need for stronger predictive models for IMV necessity. We developed a two-step model; the first step was to train a machine learning predictive model on a large dataset of non-COVID-19 critically ill hypoxemic patients from the United States (MIMIC-III). The second step was to apply transfer learning and adapt the model to a smaller COVID-19 cohort. An XGBoost algorithm was trained on data from the MIMIC-III database to predict if a patient would require IMV within the next 6, 12, 18 or 24 h. Patients’ datasets were used to construct the model as time series of dynamic measurements and laboratory results obtained during the previous 6 h with additional static variables, applying a sliding time-window once every hour. We validated the adaptation algorithm on a cohort of 1061 COVID-19 patients from a single center in Israel, of whom 160 later deteriorated and required IMV. The new XGBoost model for the prediction of the IMV onset was trained and tested on MIMIC-III data and proved to be predictive, with an AUC of 0.83 on a shortened set of features, excluding the clinician’s settings, and an AUC of 0.91 when the clinician settings were included. Applying these models “as is” (no adaptation applied) on the dataset of COVID-19 patients degraded the prediction results to AUCs of 0.78 and 0.80, without and with the clinician’s settings, respectively. Applying the adaptation on the COVID-19 dataset increased the prediction power to an AUC of 0.94 and 0.97, respectively. Good AUC results get worse with low overall precision. We show that precision of the prediction increased as prediction probability was higher. Our model was successfully trained on a specific dataset, and after adaptation it showed promise in predicting outcome on a completely different dataset. This two-step model successfully predicted the need for invasive mechanical ventilation 6, 12, 18 or 24 h in advance in both general ICU population and COVID-19 patients. Using the prediction probability as an indicator of the precision carries the potential to aid the decision-making process in patients with hypoxemic respiratory failure despite the low overall precision.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
星辰大海应助小明明采纳,获得10
刚刚
认真跳跳糖完成签到,获得积分10
1秒前
甜蜜秋蝶发布了新的文献求助10
1秒前
1秒前
Andy1201应助178181采纳,获得10
2秒前
2秒前
3秒前
3秒前
CC完成签到,获得积分10
3秒前
核桃发布了新的文献求助10
4秒前
lizh187完成签到 ,获得积分10
4秒前
华仔应助Yuuuu采纳,获得10
4秒前
5秒前
bkagyin应助123采纳,获得10
6秒前
6秒前
橘子糕发布了新的文献求助10
7秒前
yookia应助栖木采纳,获得10
8秒前
打打应助爱死看文献啦采纳,获得10
8秒前
8秒前
酷炫贞发布了新的文献求助10
8秒前
wiwi发布了新的文献求助10
8秒前
eijgnij发布了新的文献求助10
8秒前
9秒前
L~发布了新的文献求助10
10秒前
10秒前
zxc167完成签到,获得积分10
11秒前
Lucas应助hkxfg采纳,获得30
11秒前
Jasmine发布了新的文献求助10
11秒前
研猫完成签到,获得积分10
12秒前
丘比特应助Stroeve采纳,获得10
12秒前
13秒前
14秒前
研猫发布了新的文献求助20
15秒前
15秒前
15秒前
16秒前
棉花不是花完成签到,获得积分10
16秒前
Yuuuu发布了新的文献求助10
16秒前
yookia应助Jasmine采纳,获得10
16秒前
充电宝应助Jasmine采纳,获得10
16秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979392
求助须知:如何正确求助?哪些是违规求助? 3523308
关于积分的说明 11217159
捐赠科研通 3260797
什么是DOI,文献DOI怎么找? 1800211
邀请新用户注册赠送积分活动 878960
科研通“疑难数据库(出版商)”最低求助积分说明 807113