A novel machine learning model to predict respiratory failure and invasive mechanical ventilation in critically ill patients suffering from COVID-19

机械通风 医学 队列 病危 2019年冠状病毒病(COVID-19) 机器学习 呼吸衰竭 人工智能 重症监护医学 计算机科学 急诊医学 内科学 传染病(医学专业) 疾病
作者
Itai Bendavid,Liran Statlender,Leonid Shvartser,Shmuel Teppler,Roy Azullay,Rotem Sapir,Pierre Singer
出处
期刊:Scientific Reports [Springer Nature]
卷期号:12 (1) 被引量:31
标识
DOI:10.1038/s41598-022-14758-x
摘要

Abstract In hypoxemic patients at risk for developing respiratory failure, the decision to initiate invasive mechanical ventilation (IMV) may be extremely difficult, even more so among patients suffering from COVID-19. Delayed recognition of respiratory failure may translate into poor outcomes, emphasizing the need for stronger predictive models for IMV necessity. We developed a two-step model; the first step was to train a machine learning predictive model on a large dataset of non-COVID-19 critically ill hypoxemic patients from the United States (MIMIC-III). The second step was to apply transfer learning and adapt the model to a smaller COVID-19 cohort. An XGBoost algorithm was trained on data from the MIMIC-III database to predict if a patient would require IMV within the next 6, 12, 18 or 24 h. Patients’ datasets were used to construct the model as time series of dynamic measurements and laboratory results obtained during the previous 6 h with additional static variables, applying a sliding time-window once every hour. We validated the adaptation algorithm on a cohort of 1061 COVID-19 patients from a single center in Israel, of whom 160 later deteriorated and required IMV. The new XGBoost model for the prediction of the IMV onset was trained and tested on MIMIC-III data and proved to be predictive, with an AUC of 0.83 on a shortened set of features, excluding the clinician’s settings, and an AUC of 0.91 when the clinician settings were included. Applying these models “as is” (no adaptation applied) on the dataset of COVID-19 patients degraded the prediction results to AUCs of 0.78 and 0.80, without and with the clinician’s settings, respectively. Applying the adaptation on the COVID-19 dataset increased the prediction power to an AUC of 0.94 and 0.97, respectively. Good AUC results get worse with low overall precision. We show that precision of the prediction increased as prediction probability was higher. Our model was successfully trained on a specific dataset, and after adaptation it showed promise in predicting outcome on a completely different dataset. This two-step model successfully predicted the need for invasive mechanical ventilation 6, 12, 18 or 24 h in advance in both general ICU population and COVID-19 patients. Using the prediction probability as an indicator of the precision carries the potential to aid the decision-making process in patients with hypoxemic respiratory failure despite the low overall precision.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
pluto应助李哥采纳,获得10
2秒前
sarah完成签到,获得积分10
3秒前
fdpb发布了新的文献求助10
3秒前
wulala发布了新的文献求助30
4秒前
5秒前
7秒前
7秒前
上官若男应助zczczczczczc采纳,获得10
7秒前
王柯完成签到,获得积分10
8秒前
8秒前
Kai完成签到,获得积分10
8秒前
Islay50ppm完成签到 ,获得积分10
8秒前
迪迦发布了新的文献求助10
9秒前
兴奋的太兰完成签到,获得积分10
10秒前
王冠军发布了新的文献求助10
10秒前
11秒前
11秒前
11秒前
11秒前
12秒前
无花果应助王柯采纳,获得10
12秒前
14秒前
dmj发布了新的文献求助30
14秒前
15秒前
可爱的函函应助lyh采纳,获得30
15秒前
爱静静应助darren采纳,获得10
15秒前
Big PAN Chicken完成签到,获得积分10
16秒前
耶啵发布了新的文献求助30
17秒前
17秒前
17秒前
17秒前
xjcy发布了新的文献求助10
18秒前
18秒前
兰格格完成签到,获得积分10
18秒前
18秒前
19秒前
zczczczczczc发布了新的文献求助10
20秒前
20秒前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Agenda-setting and journalistic translation: The New York Times in English, Spanish and Chinese 1000
Les Mantodea de Guyane 1000
Very-high-order BVD Schemes Using β-variable THINC Method 950
Field Guide to Insects of South Africa 660
Publish or Perish: Perceived Benefits versus Unintended Consequences, Second Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3390134
求助须知:如何正确求助?哪些是违规求助? 3001904
关于积分的说明 8800523
捐赠科研通 2688466
什么是DOI,文献DOI怎么找? 1472637
科研通“疑难数据库(出版商)”最低求助积分说明 681027
邀请新用户注册赠送积分活动 673707