已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Combining multi-indicators with machine-learning algorithms for maize yield early prediction at the county-level in China

随机森林 适应性 产量(工程) 稳健性(进化) 梯度升压 粮食安全 作物产量 机器学习 数学 过度拟合 统计 计算机科学 农业 农学 地理 生态学 人工神经网络 基因 生物 考古 生物化学 化学 冶金 材料科学
作者
Minghan Cheng,Josep Peñuelas,Matthew F. McCabe,Clement Atzberger,Xiyun Jiao,Wenbin Wu,Xiuliang Jin
出处
期刊:Agricultural and Forest Meteorology [Elsevier BV]
卷期号:323: 109057-109057 被引量:57
标识
DOI:10.1016/j.agrformet.2022.109057
摘要

The accurate and timely prediction of crop yield at a large scale is important for food security and the development of agricultural policy. An adaptable and robust method for estimating maize yield for the entire territory of China, however, is currently not available. The inherent trade-off between early estimates of yield and the accuracy of yield prediction also remains a confounding issue. To explore these challenges, we employ indicators such as GPP, ET, surface temperature (Ts), LAI, soil properties and maize phenological information with random forest regression (RFR) and gradient boosting decision tree (GBDT) machine learning approaches to provide maize yield estimates within China. The aims were to: (1) evaluate the accuracy of maize yield prediction obtained from multimodal data analysis using machine-learning; (2) identify the optimal period for estimating yield; and (3) determine the spatial robustness and adaptability of the proposed method. The results can be summarized as: (1) RFR estimated maize yield more accurately than GBDT; (2) Ts was the best single indicator for estimating yield, while the combination of GPP, Ts, ET and LAI proved best when multi-indicators were used (R2 = 0.77 and rRMSE = 16.15% for the RFR); (3) the prediction accuracy was lower with earlier lead time but remained relatively high within at least 24 days before maturity (R2 > 0.77 and rRMSE <16.92%); and (4) combining machine-learning algorithms with multi-indicators demonstrated a capacity to cope with the spatial heterogeneity. Overall, this study provides a reliable reference for managing agricultural production.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
dreamer完成签到 ,获得积分10
刚刚
1秒前
fei完成签到,获得积分10
2秒前
KUZZZ完成签到,获得积分10
3秒前
园子发布了新的文献求助10
3秒前
vv完成签到 ,获得积分10
4秒前
共享精神应助科研通管家采纳,获得10
6秒前
丘比特应助科研通管家采纳,获得10
6秒前
风清扬应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
6秒前
6秒前
玉屏风发布了新的文献求助10
7秒前
7秒前
7秒前
巧克力完成签到,获得积分10
8秒前
8秒前
13秒前
Flanker发布了新的文献求助10
13秒前
研友_85yrY8发布了新的文献求助10
13秒前
充电宝应助liuzi采纳,获得10
14秒前
14秒前
Dobby完成签到,获得积分10
15秒前
范范778完成签到 ,获得积分10
16秒前
霸气安筠发布了新的文献求助10
18秒前
19秒前
隐形曼青应助Flanker采纳,获得10
20秒前
任志政完成签到 ,获得积分10
21秒前
紫荆发布了新的文献求助30
22秒前
Jasper应助研友_85yrY8采纳,获得10
22秒前
23秒前
园子关注了科研通微信公众号
24秒前
幽默山羊发布了新的文献求助10
24秒前
半夏生姜完成签到,获得积分10
25秒前
25秒前
up完成签到,获得积分10
27秒前
冰棒比冰冰完成签到 ,获得积分10
30秒前
岛不言发布了新的文献求助10
30秒前
Mimi完成签到,获得积分10
30秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956786
求助须知:如何正确求助?哪些是违规求助? 3502880
关于积分的说明 11110500
捐赠科研通 3233866
什么是DOI,文献DOI怎么找? 1787630
邀请新用户注册赠送积分活动 870713
科研通“疑难数据库(出版商)”最低求助积分说明 802172