Combining multi-indicators with machine-learning algorithms for maize yield early prediction at the county-level in China

随机森林 适应性 产量(工程) 稳健性(进化) 梯度升压 粮食安全 作物产量 机器学习 数学 过度拟合 统计 计算机科学 农业 农学 地理 生态学 人工神经网络 基因 生物 考古 生物化学 化学 冶金 材料科学
作者
Minghan Cheng,Josep Peñuelas,Matthew F. McCabe,Clement Atzberger,Xiyun Jiao,Wenbin Wu,Xiuliang Jin
出处
期刊:Agricultural and Forest Meteorology [Elsevier]
卷期号:323: 109057-109057 被引量:46
标识
DOI:10.1016/j.agrformet.2022.109057
摘要

The accurate and timely prediction of crop yield at a large scale is important for food security and the development of agricultural policy. An adaptable and robust method for estimating maize yield for the entire territory of China, however, is currently not available. The inherent trade-off between early estimates of yield and the accuracy of yield prediction also remains a confounding issue. To explore these challenges, we employ indicators such as GPP, ET, surface temperature (Ts), LAI, soil properties and maize phenological information with random forest regression (RFR) and gradient boosting decision tree (GBDT) machine learning approaches to provide maize yield estimates within China. The aims were to: (1) evaluate the accuracy of maize yield prediction obtained from multimodal data analysis using machine-learning; (2) identify the optimal period for estimating yield; and (3) determine the spatial robustness and adaptability of the proposed method. The results can be summarized as: (1) RFR estimated maize yield more accurately than GBDT; (2) Ts was the best single indicator for estimating yield, while the combination of GPP, Ts, ET and LAI proved best when multi-indicators were used (R2 = 0.77 and rRMSE = 16.15% for the RFR); (3) the prediction accuracy was lower with earlier lead time but remained relatively high within at least 24 days before maturity (R2 > 0.77 and rRMSE <16.92%); and (4) combining machine-learning algorithms with multi-indicators demonstrated a capacity to cope with the spatial heterogeneity. Overall, this study provides a reliable reference for managing agricultural production.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
深情安青应助shatang采纳,获得10
2秒前
zxx5012发布了新的文献求助10
2秒前
芥丶子完成签到,获得积分10
3秒前
曾开心完成签到,获得积分10
3秒前
平淡南霜发布了新的文献求助10
3秒前
Blue_Pig发布了新的文献求助10
4秒前
李健的小迷弟应助逐风采纳,获得30
4秒前
yatou5651发布了新的文献求助10
5秒前
Akim应助和谐乌龟采纳,获得10
5秒前
peng完成签到,获得积分20
6秒前
CipherSage应助汉关采纳,获得10
6秒前
7秒前
7秒前
7秒前
丘比特应助XM采纳,获得10
7秒前
bkagyin应助Blue_Pig采纳,获得10
8秒前
9秒前
10秒前
10秒前
完美世界应助加油加油采纳,获得10
11秒前
11秒前
12秒前
ns发布了新的文献求助30
14秒前
11111发布了新的文献求助10
14秒前
15秒前
药学牛马完成签到,获得积分10
15秒前
张zi发布了新的文献求助10
16秒前
yatou5651发布了新的文献求助10
17秒前
17秒前
小魏不学无术完成签到,获得积分10
17秒前
木棉发布了新的文献求助10
17秒前
A1234发布了新的文献求助10
18秒前
英俊的铭应助弄井采纳,获得30
18秒前
小二郎应助Dean采纳,获得10
19秒前
故意的冰淇淋完成签到 ,获得积分10
19秒前
19秒前
远方完成签到,获得积分10
20秒前
kiminonawa完成签到,获得积分0
21秒前
zrz完成签到,获得积分10
21秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808