摘要
Free Access References Prof. Dr. Christian Reichardt, Prof. Dr. Christian Reichardt Fachbereich Chemie der Philipps-Universität, Hans-Meerwein-Strasse, 35032 Marburg, GermanySearch for more papers by this authorProf. Dr. Thomas Welton, Prof. Dr. Thomas Welton Department of Chemistry, Imperial College London, South Kensington Campus, London SW7 2AZ, United KingdomSearch for more papers by this author Book Author(s):Prof. Dr. Christian Reichardt, Prof. Dr. Christian Reichardt Fachbereich Chemie der Philipps-Universität, Hans-Meerwein-Strasse, 35032 Marburg, GermanySearch for more papers by this authorProf. Dr. Thomas Welton, Prof. Dr. Thomas Welton Department of Chemistry, Imperial College London, South Kensington Campus, London SW7 2AZ, United KingdomSearch for more papers by this author First published: 27 October 2010 https://doi.org/10.1002/9783527632220.refs AboutPDFPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShareShare a linkShare onEmailFacebookTwitterLinkedInRedditWechat References Introduction Google Scholar Hermannus Boerhaave: Elementa Chemiae, Editio Altera, Leydensi multo correctior et accuratior, G. Cavelier, Parisii, 1733, Tomus Primus, p. 558. Google Scholar G. A. Lindeboom: Herman Boerhaave – The Man and his Work, Methuen, London, 1968; Web of Science®Google Scholar cf. also Endeavour 28, 2 (1969). 10.1016/j.endeavour.2004.01.009 PubMedWeb of Science®Google Scholar P. Walden: Die Lösungstheorien in ihrer geschichtlichen Aufeinanderfolge, in W. Herz (Ed.): Sammlung chemischer und chemisch-technischer Vorträge, Enke, Stuttgart, 1910, Vol. XV, Heft 8–12; Google Scholar Chem. Zentralbl. 1910 II, 1352; Google Scholar P. Walden: Elektrochemie nichtwässriger Lösungen, J. A. Barth, Leipzig, 1924. Google Scholar F. Szabadváry: Geschichte der Analytischen Chemie, Vieweg, Braunschweig, and Akadémiai Kiadó, Budapest, 1966, p. 38. Google Scholar J. H. van't Hoff: Über die Theorie der Lösungen, in F. W. Ahrens (Ed.): Sammlung chemischer und chemisch-technischer Vorträge, Enke, Stuttgart, 1900, Vol. V, Heft 1; Google Scholar Chem. Zentralbl. 1900 I, 696. Google Scholar J. R. Partington: A History of Chemistry, MacMillan, London, New York, 1964, Vol. 4, Chapter XX, p. 637ff. Google Scholar For a survey of older works on solvent effects on reaction rates, see M. Magat, Z. Phys. Chem. A 162, 432 (1932); CASGoogle Scholar Chem. Zentralbl. 1933 I, 1566. Google Scholar J. H. van't Hoff: Die chemische Dynamik, in Vorlesungen über theoretische und physikalische Chemie, Vieweg, Braunschweig, 1898, Heft 1; Google Scholar Chem. Zentralbl. 1899 II, 278. Google Scholar M. Berthelot and L. Péan de Saint-Gilles, Ann. Chim. et Phys., 3. Ser., 65, 385 (1862); 66, 5 (1862); 68, 255 (1863). Google Scholar Translated into German and edited by M. and A. Ladenburg in: Ostwald's Klassiker der exakten Naturwissenschaften, Nr. 173, Engelmann, Leipzig, 1910. Google Scholar N. Menschutkin, Z. Phys. Chem. 1, 611 (1887); 10.1515/zpch-1887-0163 Google Scholar ibid. 5, 589 (1890); Google Scholar ibid. 6, 41 (1890); Google Scholar ibid. 34, 157 (1900). Google Scholar Th. Zincke and H. Bindewald, Ber. Dtsch. Chem. Ges. 17, 3026 (1884); 10.1002/cber.188401702282 Google Scholar Th. Zincke and H. Thelen, ibid. 17, 1809 (1884). Google Scholar P. C. Laar, Ber. Dtsch. Chem. Ges. 18, 648 (1885); 10.1002/cber.188501801141 Google Scholar ibid. 19, 730 (1886). Google Scholar C. K. Ingold: Structure and Mechanism in Organic Chemistry, 2nd edition, Cornell University Press, Ithaca, London, 1969, p. 794ff. Google Scholar L. Claisen, Liebigs Ann. Chem. 291, 25 (1896); especially pp. 30, 43, and 86. 10.1002/jlac.18962910106 CASGoogle Scholar W. Wislicenus, Liebigs Ann. Chem. 291, 147 (1896); especially p. 176ff. 10.1002/jlac.18962910108 CASGoogle Scholar L. Knorr, Liebigs Ann. Chem. 293, 70 (1896); especially p. 88. 10.1002/jlac.18962930107 CASGoogle Scholar A. Hantzsch and O. W. Schultze, Ber. Dtsch. Chem. Ges. 29, 2251 (1896); especially p. 2256. 10.1002/cber.189602902226 CASGoogle Scholar H. Stobbe, Liebigs Ann. Chem. 326, 347 (1903); especially p. 357ff. 10.1002/jlac.19033260308 Google Scholar O. Dimroth, Liebigs Ann. Chem. 377, 127 (1910); 10.1002/jlac.19103770202 CASWeb of Science®Google Scholar ibid. 399, 91 (1913). Google Scholar K. H. Meyer, Liebigs Ann. Chem. 380, 212 (1911); 10.1002/jlac.19113800206 CASWeb of Science®Google Scholar Ber. Dtsch. Chem. Ges. 45, 2843 (1912); 10.1002/cber.19120450303 Web of Science®Google Scholar ibid. 47, 826 (1914). Google Scholar S. E. Sheppard, Rev. Modern Phys. 14, 303 (1942); 10.1103/RevModPhys.14.303 CASGoogle Scholar Chem. Abstr. 37, 1654 (1943). Google Scholar A. Hantzsch, Ber. Dtsch. Chem. Ges. 55, 953 (1922). 10.1002/cber.19220550420 Web of Science®Google Scholar A. Kundt: Über den Einfluß des Lösungsmittels auf die Absorptionsspectra gelöster absorbierender Medien, Poggendorfs Ann. Phys. Chem. N.F. 4, 34 (1878); 10.1002/andp.18782400503 Google Scholar Chem. Zentralbl. 1878, 498. Google Scholar W. R. Brode, J. Phys. Chem. 30, 56 (1926); 10.1021/j150259a006 CASGoogle Scholar Chem. Zentralbl. 1926 I, 2775. Google Scholar G. Scheibe, E. Felger, and G. Rößler, Ber. Dtsch. Chem. Ges. 60, 1406 (1927). 10.1002/cber.19270600624 Web of Science®Google Scholar N. Menschutkin: Sur les conditions de l'acte de la combinaison chimique; modifications déterminées la présence des dissolvants, soi-disant indifférents (Extrait d'une lettre de M. Menschutkin, professeur de chimie à Saint-Petersburg, à M. Louis Henry, Louvain), Bulletin de l'Académie Royale des Sciences, des Lettres et des Beaux-Arts de Belgique [3] 19, 513–514 (1890); Google Scholar Cf. also A. Bruylants, Bulletin de l'Académie Royale de Belgique (Classe des Sciences) [5] 62, 866–882 (esp. p. 877) (1976); Web of Science®Google Scholar Chem. Abstr. 87, 166770x (1977). – I thank Prof. Bruylants, Louvain-La-Neuve, for drawing my attention to this important letter of Menschutkin. Google Scholar M. V. Lomonosov: O Deistvii Chimicheskikh Rastvoritelei Voobshche (On the Action of Chemical Solvents in General), in S. R. Mikulinskii (Ed.): M. V. Lomonosov – Izbrannye Proizvedeniya (Selected Works), Tom 1, p. 58–73; Estestvennye Nauki i Filosofiya, Nauka, Moskva, 1986. This paper was first published in 1747 in Latin and Lomonosov considered it as the first contribution to a pure physical chemistry. – I thank Prof. Möckel, Mühlhausen/Germany, for drawing my attention to this important publication of Lomonosov. Google Scholar J. H. van't Hoff: Raoult Memorial Lecture, J. Chem. Soc. 81, 969 (1902); 10.1039/ct9028100969 CASGoogle Scholar see also M. Sutton, Chem. Br. 37, 66 (2001) and CASWeb of Science®Google Scholar J. van Houten, J. Chem. Educ. 78, 1570 (2001). 10.1021/ed078p1570 CASWeb of Science®Google Scholar K. J. Laidler: A Century of Solution Chemistry, Pure Appl. Chem. 62, 2221 (1990); 10.1351/pac199062122221 CASWeb of Science®Google Scholar K. J. Laidler: The World of Physical Chemistry, Oxford University Press, Oxford/U.K., 1993. Google Scholar H. Ohtaki: Development of Modern Solution Chemistry: A Search of New Fields, Coord. Chem. Rev. 185/186, 735 (1999). 10.1016/S0010-8545(99)00042-9 Web of Science®Google Scholar W. M. Nelson: Green Solvents for Chemistry – Perspectives and Practice, Oxford University Press, Oxford, 2003. Google Scholar (a) D. J. Adams, P. J. Dyson, S. J. Tavener: Chemistry in Alternative Reaction Media, Wiley, Chichester, 2004; Google Scholar (b) J. H. Clark, S. J. Tavener: Alternative Solvents: Shades of Green, Org. Process Res. Dev. 11, 149 (2007). 10.1021/op060160g CASWeb of Science®Google Scholar R. A. Sheldon: Green Solvents for Sustainable Organic Syntheses: State of the Art, Green Chem. 7, 267 (2005); 10.1039/b418069k CASWeb of Science®Google Scholar see also R. A. Sheldon, Chem. Commun. 3352 (2008). 10.1039/b803584a CASPubMedWeb of Science®Google Scholar (a) W. Leitner, P. G. Jessop, C.-J. Li, P. Wasserscheid, A. Stark: Green Solvents. In P. T. Anastas (Ed.): Handbook of Green Chemistry. Vol. 2, Wiley-VCH, Weinheim, 2010; Google Scholar (b) P. T. Anastas, N. Eghbali: Green Chemistry: Principles and Practice. Chem. Soc. Rev. 39, 301 (2010). 10.1039/B918763B CASPubMedWeb of Science®Google Scholar K. R. Seddon, Kinetika i Kataliz 37, 743 (1996); Google Scholar Kinetics and Catalysis 37, 693 (1996); CASWeb of Science®Google Scholar Chem. Abstr. 125, 285927s (1996). Google Scholar K. R. Seddon, J. Chem. Technol. Biotechnol. 68, 351 (1997); 10.1002/(SICI)1097-4660(199704)68:4<351::AID-JCTB613>3.0.CO;2-4 CASWeb of Science®Google Scholar Chem. Abstr. 126, 306898w (1997). Google Scholar J. O. Metzger: Lösungsmittelfreie organische Synthesen, Angew. Chem. 110, 3145 (1998); 10.1002/(SICI)1521-3757(19981102)110:21<3145::AID-ANGE3145>3.0.CO;2-U Google Scholar Angew. Chem. Int. Ed. Engl. 37, 2975 (1998). 10.1002/(SICI)1521-3773(19981116)37:21<2975::AID-ANIE2975>3.0.CO;2-A CASPubMedWeb of Science®Google Scholar J. M. Thomas, R. Raja, G. Sankar, B. F. G. Johnson, D. W. Lewis: Solvent-Free Routes to Clean Technology, Chem. Eur. J. 7, 2973 (2001). 10.1002/1521-3765(20010716)7:14<2972::AID-CHEM2972>3.0.CO;2-Z CASPubMedWeb of Science®Google Scholar K. Tanaka: Solvent-Free Organic Synthesis, 2nd ed., Wiley-VCH, Weinheim, 2008. 10.1002/9783527626410 Google Scholar V. Polshettiwar, R. S. Varma: Microwave-Assisted Organic Synthesis and Transformations Using Benign Reaction Media, Acc. Chem. Res. 41, 629 (2008). 10.1021/ar700238s CASPubMedWeb of Science®Google Scholar F. Toda (Ed.): Organic Solid State Reactions, Top. Curr. Chem. 254, 1–305 (2005). Web of Science®Google Scholar B. Rodríguez, A. Bruckmann, C. Bolm, Chem. Eur. J. 13, 4710 (2007). 10.1002/chem.200700188 CASPubMedWeb of Science®Google Scholar C. Reichardt, Org. Process Res. Dev. 11, 105 (2007). 10.1021/op0680082 CASWeb of Science®Google Scholar J. A. Hedvall: Solid State Chemistry – Whence, Where and Whither, Elsevier, Amsterdam, 1966, p. 1–2. Google Scholar (a) H. H. Joachim (Ed.): Aristotle: On Coming-to-Be and Passing Away (De Generatione et Corruptione), 328b (Original Greek version, p. 36), Clarendon Press, Oxford, 1922; Google Scholar (b) J. Judycka (Ed.): Aristoteles Latinus IX, 1: De Generatione et Corruptione, 328b (Latin version, p. 50), E. J. Brill, Leiden, 1986; Google Scholar (c) C. J. F. Williams: Aristotle's De Generatione et Corruptione, 328b (English version, p. 35), Clarendon Press, Oxford, 1982. Google Scholar V. M. Lindström (Ed.): Organic Reactions in Water – Principles, Strategies and Applications, Blackwell, Oxford, 2007. Google Scholar Chapter 2 Google Scholar D. H. Whiffen (Ed.): Manual of Symbols and Terminology for Physicochemical Quantities and Units, Appendix I: Solutions, Pure Appl. Chem. 51, 1 (1979). 10.1351/pac197951010001 Google Scholar T. S. Ree, T. Ree, and H. Eyring, Angew. Chem. 77, 993 (1965); 10.1002/ange.19650772203 CASGoogle Scholar Angew. Chem. Int. Ed. Engl. 4, 923 (1965); 10.1002/anie.196509231 Web of Science®Google Scholar H. Eyring and M. S. Jhon: Significant Liquid Structures, Wiley, New York, 1969. Google Scholar J. S. Rowlinson and F. L. Swinton: Liquids and Liquid Mixtures, 3rd ed., Butterworths, London 1982; Essays in Chemistry 1, 1 (1970). Google Scholar J. H. Hildebrand, J. M. Prausnitz, and R. L. Scott: Regular and Related Solutions, Van Nostrand-Reinhold, Princeton, 1970. Google Scholar European Molecular Liquids Group: Novel Approaches to the Structure and Dynamics of Liquids (Symposium Report), Pure Appl. Chem. 76, 1–261 (2004). Google Scholar T. L. Beck, M. E. Paulaitis, L. R. Pratt: The Potential Distribution Theorem and Models of Molecular Solutions, Cambridge University Press, Cambridge, 2006. 10.1017/CBO9780511536663 Google Scholar D. M. Heyes: The Liquid State, Wiley-VCH, Weinheim/Germany, 1997. Google Scholar E. Wicke, Angew. Chem. 78, 1 (1966); 10.1002/ange.19660780102 Google Scholar Angew. Chem. Int. Ed. Engl. 5, 106 (1966). 10.1002/anie.196601061 CASWeb of Science®Google Scholar R. A. Horne: The Structure of Water and Aqueous Solutions, in A. F. Scott (Ed.): Survey of Progress in Chemistry 4, 1 (1968). Web of Science®Google Scholar A. Ben-Naim: Molecular Theory of Water and Aqueous Solutions, Part I: Understanding Water. World Scientific, Singapore, 2009. Google Scholar P. Krindel and I. Eliezer: Water Structure Models, in Coord. Chem. Rev. 6, 217 (1971). 10.1016/S0010-8545(00)80040-5 Web of Science®Google Scholar R. A. Horne (Ed.): Water and Aqueous Solutions – Structure, Thermodynamics, and Transport Processes, Wiley, New York, 1972. Google Scholar (a) F. Franks (Ed.): Water – A Comprehensive Treatise, Vols. 1–7, Plenum Press, London, 1972–1982; Google Scholar (b) F. Franks: Water – a Matrix of Life, 2nd ed., Royal Society of Chemistry, Cambridge, 2000. Google Scholar W. A. P. Luck (Ed.): Structure of Water and Aqueous Solutions, Verlag Chemie, Weinheim, 1974. Google Scholar (a) R. Ludwig, Water: From Clusters to the Bulk, Angew. Chem. 113, 1856 (2001); 10.1002/1521-3757(20010518)113:10<1856::AID-ANGE1856>3.0.CO;2-5 Google Scholar Angew. Chem. Int. Ed. 40, 1808 (2001); 10.1002/1521-3773(20010518)40:10<1808::AID-ANIE1808>3.0.CO;2-1 CASPubMedWeb of Science®Google Scholar (b) R. Ludwig, D. Paschek: Anomalien und Rätsel: Wasser, Chem. Unserer Zeit 39, 164 (2005); 10.1002/ciuz.200400341 CASWeb of Science®Google Scholar (c) R. Ludwig: The Importance of Tetrahedrally Coordinated Molecules for the Explanation of Liquid Water Properties, ChemPhysChem 8, 938 (2007). 10.1002/cphc.200700067 CASPubMedWeb of Science®Google Scholar M. Klose and J. I. Naberuchin: Wasser – Struktur und Dynamik, Akademie-Verlag, Berlin, 1986. Google Scholar H. S. Frank and W.-Y. Wen, Discussions Faraday Soc. 24, 133 (1957); 10.1039/df9572400133 CASWeb of Science®Google Scholar H. S. Frank, Proc. Roy. Soc. London Ser. A 247, 481 (1958). 10.1098/rspa.1958.0206 CASWeb of Science®Google Scholar D. T. Hawkins: A Bibliography on the Physical and Chemical Properties of Water (1969–1974), in J. Sol. Chem. 4, 625 (1975). 10.1007/BF01019457 Google Scholar K. Ziegler, in Houben-Weyl-Müller, “Methoden der Organischen Chemie”, 4th ed., Thieme, Stuttgart 1955, Vol. IV/2, p. 738. Google Scholar F. Franks and D. J. G. Ives, Quart. Rev. Chem. Soc. 20, 1 (1966). 10.1039/qr9662000001 CASWeb of Science®Google Scholar O. Fuchs, Fortschr. Chem. Forsch. 11, 74 (1968); 10.1007/BFb0051165 CASGoogle Scholar Deutsche Farben-Zeitschrift 22, 548 (1968); 23, 17, 57, 111 (1969); Web of Science®Google Scholar Chem. Abstr. 71, 70949f (1969). Google Scholar K. C. James, Education in Chemistry 9, 220 (1972). CASGoogle Scholar G. C. Pimentel (Ed.): Chemistry – An Experimental Science, Freeman, San Francisco, 1963, p. 313 and 554. Google Scholar G. Duve, O. Fuchs, and H. Overbeck: Lösemittel Hoechst, 6th ed., Hoechst AG, Frankfurt (Main), 1976. Google Scholar A. F. M. Barton, Handbook of Solubility Parameters and other Cohesion Parameters, CRC Press, Boca Raton/Florida, 1983. Google Scholar M. R. J. Dack: The Importance of Solvent Internal Pressure and Cohesion to Solution Phenomena, Chem. Soc. Rev. (London) 4, 211 (1975). 10.1039/cs9750400211 CASWeb of Science®Google Scholar For reviews on inter-molecular forces, see: (a) Reviews on van der Waals Molecules, Parts I–III, in: (I) Chem. Rev. 88, 813–988 (1988); Google Scholar (II) Chem. Rev. 94, 1721–2160 (1994); Google Scholar (III) Chem. Rev. 101, 3861–4264 (2001); Google Scholar (b) J. Israelachvili: Intermolecular and Surface Forces, 2nd ed., Academic Press, London, 1991; Google Scholar (c) P. L. Huyskens, W. A. P. Luck, and T. Zeegers-Huyskens: Intermolecular Forces, Springer, Berlin, 1991; 10.1007/978-3-642-76260-4 Google Scholar (d) K. Müller-Dethlefs, P. Hobza: Noncovalent Interactions: A Challenge for Experiment and Theory, Chem. Rev. 100, 143 (2000); 10.1021/cr9900331 CASPubMedWeb of Science®Google Scholar (e) J. S. Rowlinson: Cohesion – a Scientific History of Intermolecular Forces, Cambridge University Press, Cambridge, 2002; 10.1017/CBO9780511535420 Google Scholar (f) C. A. Hunter: Quantifying Intermolecular Interactions: Guidelines for the Molecular Recognition Tool Box, Angew. Chem. 116, 5424 (2004); 10.1002/ange.200301739 Google Scholar Angew. Chem. Int. Ed. 43, 5310 (2004); 10.1002/anie.200301739 CASPubMedWeb of Science®Google Scholar (g) P. S. Murthy: Molecular Handshake: Recognition Through Weak Noncovalent Interactions, J. Chem. Educ. 83, 1010 (2006). 10.1021/ed083p1010 CASWeb of Science®Google Scholar For compilations of attempts to treat intermolecular forces by quantum mechanical methods, see: (a) A. D. Buckingham, P. W. Fowler, and J. M. Hutson: Theoretical Studies of van der Waals Molecules and Intermolecular Forces, Chem. Rev. 88, 963 (1988); 10.1021/cr00088a008 CASWeb of Science®Google Scholar (b) A. J. Stone: The Theory of Intermolecular Forces, Oxford University Press, Oxford/U.K., 1996; Google Scholar (c) S. Scheiner (ed.): Molecular Interactions – From van der Waals to Strongly Bound Complexes, Wiley-VCH, Weinheim/ Germany, 1997; Google Scholar (d) J. Tomasi, B. Mennucci, and C. Cappelli: Solvents and Solutions as Assemblies of Interacting Molecules, in G. Wypych (Ed.): Handbook of Solvents (+Solvent Database on CDROM), ChemTec Publishing, Toronto, and William Andrew Publishing, New York, 2001, Chapter 8.1, p. 419–504. Google Scholar [e] I. G. Kaplan: Intermolecular Interactions – Physical Picture, Computational Methods and Model Potentials, Wiley, New York, 2006. 10.1002/047086334X Google Scholar H. H. Jaffé, J. Chem. Educ. 40, 649 (1963). 10.1021/ed040p649 Google Scholar W. H. Keesom, Physik. Z. 22, 129, 643 (1921); 23, 225 (1922). CASWeb of Science®Google Scholar R. L. Amey, J. Phys. Chem. 72, 3358 (1968). 10.1021/j100855a061 CASWeb of Science®Google Scholar M. Rabinowitz and A. Pines, J. Am. Chem. Soc. 91, 1585 (1969). 10.1021/ja01035a001 Web of Science®Google Scholar P. Debye, Physik. Z. 21, 178 (1920); 22, 302 (1921). CASWeb of Science®Google Scholar F. London, Z. Physik. Chem. (B) 11, 222 (1931); Web of Science®Google Scholar Z. Physik 63, 245 (1930); 10.1007/BF01421741 CASGoogle Scholar Trans. Faraday Soc. 33, 8 (1937). 10.1039/tf937330008b CASGoogle Scholar R. Ulbrich, Chemiker-Ztg. 99, 320 (1975). CASWeb of Science®Google Scholar E. F. Meyer and R. E. Wagner, J. Phys. Chem. 70, 3162 (1966). 10.1021/j100882a025 CASWeb of Science®Google Scholar C. H. Yoder, J. Chem. Educ. 54, 402 (1977). 10.1021/ed054p402 CASWeb of Science®Google Scholar A. J. Parker, Quart. Rev. (London) 16, 163 (1962); 10.1039/qr9621600163 CASWeb of Science®Google Scholar Usp. Khim. 32, 1270 (1963). Google Scholar M. L. Huggins, Angew. Chem. 83, 163 (1971); 10.1002/ange.19710830503 Google Scholar Angew. Chem. Int. Ed. Engl. 10, 147 (1971). 10.1002/anie.197101471 CASWeb of Science®Google Scholar M. D. Joesten and L. J. Schaad: Hydrogen Bonding, Dekker, New York, 1974. Web of Science®Google Scholar P. Schuster (ed.): Hydrogen Bonds, Top. Curr. Chem. 120, 1–113 (1984) (particularly p. 35ff.). Google Scholar F. Hibbert and J. Emsley: Hydrogen Bonding and Chemical Reactivity, Adv. Phys. Org. Chem. 26, 255 (1990). 10.1016/S0065-3160(08)60047-7 CASGoogle Scholar G. A. Jeffrey and W. Saenger: Hydrogen Bonding in Biological Structures, Springer, Berlin, 1991. 10.1007/978-3-642-85135-3 Google Scholar C. B. Aakeröy and K. R. Seddon: The Hydrogen Bond and Crystal Engineering, Chem. Soc. Rev. 22, 397 (1993). 10.1039/cs9932200397 CASWeb of Science®Google Scholar C. L. Perrin and J. B. Nielson: “Strong” Hydrogen Bonds in Chemistry and Biology, Annu. Rev. Phys. Chem. 48, 511 (1997). 10.1146/annurev.physchem.48.1.511 CASPubMedWeb of Science®Google Scholar M. S. Gordon and J. H. Jensen: Understanding the Hydrogen Bond Using Quantum Chemistry, Acc. Chem. Res. 29, 536 (1996). 10.1021/ar9600594 CASWeb of Science®Google Scholar D. Hadzi (Ed.): Theoretical Treatments of Hydrogen Bonding, Wiley-VCH, Weinheim/Germany, 1997. Google Scholar G. A. Jeffrey: An Introduction to Hydrogen Bonding, Oxford University Press, Oxford/ U.K., 1997. Google Scholar E. M. Arnett, L. Jores, E. Mitchell, T. S. S. R. Murty, T. M. Gorrie, and P. v. R. Schleyer, J. Am. Chem. Soc. 92, 2365 (1970). 10.1021/ja00711a029 CASWeb of Science®Google Scholar D. Hadži and N. Kobilarov, J. Chem. Soc. A 1966, 439. PubMedGoogle Scholar (a) G. Kortüm: Lehrbuch der Elektrochemie. 5th ed., Verlag Chemie, Weinheim, 1972; Google Scholar (b) N. A. Izmailov: Elektrokhimiya Rastvorov (Electrochemistry of Solutions). Kharkov University Press, Kharkov, 1959; 2nd and 3rd eds., Izdatel'stvo Khimiya, Moscow, 1966 and 1976; Google Scholar (c) M. R. Wright: An Introduction to Aqueous Electrolyte Solutions. Wiley, Chichester, 2007. Google Scholar G. Briegleb, Elektronen-Donator-Acceptor-Komplexe, Springer, Berlin, 1961. 10.1007/978-3-642-86555-8 Web of Science®Google Scholar R. S. Mulliken and W. B. Person: Molecular Complexes – A Lecture and Reprint Volume, Wiley-Interscience, New York, 1969. Google Scholar O. Hassel, Angew. Chem. 82, 821 (1970). 10.1002/ange.19700822002 Google Scholar V. Gut-mann: Coordination Chemistry in Non-Aqueous Solvents, Springer, Wien, New York, 1968; 10.1007/978-3-7091-8194-2 Google Scholar V. Gutmann: Chemische Funktionslehre, Springer, Wien, New York, 1971; 10.1007/978-3-7091-8272-7 Google Scholar V. Gutmann, The Donor–Acceptor Approach to Molecular Interactions, Plenum Publ. Corp., New York, 1978. 10.1007/978-1-4615-8825-2 Google Scholar H. A. Bent, Chem. Rev. 68, 587 (1968). 10.1021/cr60255a003 CASWeb of Science®Google Scholar E. N. Gur'yanova, Usp. Khim. 37, 1981 (1968); 10.1070/RC1968v037n11ABEH001729 CASGoogle Scholar Russ. Chem. Rev. 37, 863 (1968); 10.1070/RC1968v037n11ABEH001729 Google Scholar E. N. Gur'yanova, I. P. Gol'dshtein, and I. P. Romm: The Donor–Acceptor Bond, Wiley, New York, 1975. Google Scholar J. Yarwood (Ed.): Spectroscopy and Structure of Molecular Complexes, Plenum Press, New York, 1973. 10.1007/978-1-4684-8471-7_2 Google Scholar R. Foster: Organic Charge-Transfer Complexes, Academic Press, London, New York, 1969; Google Scholar R. Foster (Ed.): Molecular Complexes, Vols. 1 and 2, Elek Science, London, 1973/74. Web of Science®Google Scholar A. E. Reed, L. A. Curtiss, and F. Weinhold, Chem. Rev. 88, 899 (1988). 10.1021/cr00088a005 CASWeb of Science®Google Scholar P. Hobza and R. Zahradnik: Intermolecular Complexes, Elsevier, Amsterdam, 1988, and Mir, Moscow, 1989. Google Scholar W. B. Jensen: The Lewis Acid-Base Definition – A Status Report, Chem. Rev. 78, 1 (1978). 10.1021/cr60311a002 CASWeb of Science®Google Scholar C. Laurence, J.-F. Gal: Lewis Basicity and A‰nity Scales: Data and Measurement. Wiley, Chichester, 2010. Google Scholar R. S. Drago, Structure and Bonding 15, 73 (1973); 10.1007/BFb0036784 CASGoogle Scholar J. Chem. Educ. 51, 300 (1974). 10.1021/ed051p300 CASWeb of Science®Google Scholar D. W. Turner: Ionization Potentials, Adv. Phys. Org. Chem. 4, 31 (1966). 10.1016/S0065-3160(08)60352-4 CASGoogle Scholar G. Briegleb: Elektronena‰nitäten organischer Moleküle, Angew. Chem. 76, 326 (1964); 10.1002/ange.19640760804 CASGoogle Scholar Angew. Chem. Int. Ed. Engl. 3, 617 (1964). 10.1002/anie.196406171 Web of Science®Google Scholar V. Kampars and O. Neilands: The Electron A‰nities of Organic Electron Acceptors, Usp. Khim. 46, 945 (1977); 10.1070/RC1977v046n06ABEH002152 CASGoogle Scholar Russ. Chem. Rev. 46, 503 (1977). 10.1070/RC1977v046n06ABEH002152 Google Scholar R. S. Mulliken and W. B. Person, J. Am. Chem. Soc. 91, 3409 (1969). 10.1021/ja01041a001 CASWeb of Science®Google Scholar D. W. Meek: Lewis Acid-Base Interactions in Polar Non-Aqueous Solvents, in J. J. Lagowski (Ed.): The Chemistry of Non-Aqueous Solvents, Academic Press, London, New York, 1966, Vol. I, p. 1ff. Google Scholar R. S. Drago and K. F. Purcell: Coordinating Solvents, in T. C. Waddington (ed.): Non-Aqueous Solvent Systems, Academic Press, London, New York, 1965, p. 211ff. Google Scholar V. Gutmann, Coord. Chem. Rev. 2, 239 (1967); 10.1016/S0010-8545(00)80206-4 CASGoogle Scholar ibid. 18, 225 (1976); Google Scholar V. Gutmann and A. Scherhaufer, Monatsh. Chem. 99, 335 (1968); 10.1007/BF00908938 CASWeb of Science®Google Scholar V. Gutmann, Chimia 23, 285 (1969); CASWeb of Science®Google Scholar V. Gutmann, Electrochimica Acta 21, 661 (1976). 10.1016/0013-4686(76)85034-7 CASWeb of Science®Google Scholar I. Lindqvist and M. Zackrisson, Acta Chem. Scand. 14, 453 (1960). 10.3891/acta.chem.scand.14-0453 CASWeb of Science®Google Scholar U. Mayer, Pure Appl. Chem. 41, 291 (1975). 10.1351/pac197541030291 CASWeb of Science®Google Scholar V. Gutmann, Pure Appl. Chem. 27, 73 (1971); 10.1351/pac197127010073 CASGoogle Scholar Fortschr. Chem. Forsch. 27, 59 (1972); 10.1007/BFb0051594 Google Scholar Structure and Bonding 15, 141 (1973). 10.1007/BFb0036785 CASGoogle Scholar U. Mayer, V. Gutmann, and W. Gerger, Monatsh. Chem. 106, 1235 (1975); 10.1007/BF00913599 CASWeb of Science®Google Scholar ibid. 108, 489 (1977); Web of Science®Google Scholar U. Mayer, Pure Appl. Chem. 51, 1697 (1979). 10.1351/pac197951081697 CASWeb of Science®Google Scholar R. S. Drago and B. B. Wayland, J. Am. Chem. Soc. 87, 3571 (1965); 10.1021/ja01094a008 CASWeb of Science®Google Scholar R. S. Drago, Structure and Bonding 15, 73 (1973); 10.1007/BFb0036784 CASGoogle Scholar J. Chem. Educ. 51, 300 (1974); 10.1021/ed051p300 CASWeb of Science®Google Scholar Coord. Chem. Rev. 33, 251 (1980); 10.1016/S0010-8545(00)80456-7 CASWeb of Science®Google Scholar R. S. Drago: Applications of Electrostatic-Covalent Models in Chemistry, Surfside Publishers, Gaines-ville/Florida, 1994. Google Scholar T. Kagiya, Y. Sumida, and T. Inoue, Bull. Chem. Soc. Jpn. 41, 767 (1968). 10.1246/bcsj.41.767 CASWeb of Science®Google Scholar For a review, see C. Agami, Bull. Soc. Chim. Fr. 1969, 2183. Google Scholar G. Nemethy and H. A. Scheraga, J. Chem. Phys. 36, 3401 (1962). 10.1063/1.1732473 CASWeb of Science®Google Scholar G. Nemethy, Angew. Chem. 79, 260 (1967); 10.1002/ange.19670790603 Google Scholar Angew. Chem. Int. Ed. Engl. 6, 195 (1967). 10.1002/anie.196701951 CASPubMedWeb of Science®Google Scholar E. M.