Integrating machine learning, modularity and supply chain integration for Branding 4.0

个性化 供应链 操作化 模块化(生物学) 编配 供应链管理 知识管理 大规模定制 品牌管理 过程管理 业务 灵活性(工程) 计算机科学 营销 产品(数学) 数学 认识论 哲学 艺术 统计 视觉艺术 几何学 生物 音乐剧 遗传学
作者
Ye Yan,Suraksha Gupta,Tana Cristina Licsandru,Klaus Schoefer
出处
期刊:Industrial Marketing Management [Elsevier]
卷期号:104: 136-149 被引量:9
标识
DOI:10.1016/j.indmarman.2022.04.013
摘要

While brands use technologies in various ways to improve their performance, they appear to struggle with achieving Branding 4.0 standards. This new generation of brand development has brought an era of hyper-customized experiences to benefit brand performance. With the Branding 4.0 literature still in its infancy, questions remain regarding how brands can maintain their identity while delivering a hyper-personalized customer experience. This study draws on mass customization, artificial intelligence, and supply chain management literature to investigate how three core organizational capabilities and resources—machine learning, modularity, and supply chain integration—helpful in achieving production flexibility could jointly enable companies to transition to and maintain a Branding 4.0 philosophy through more efficient personalization of their product offerings. This paper reports findings from 15 in-depth interviews with top executives from brands, including some Fortune Global 500 companies, in China's garment and footwear industries to provide insights into Branding 4.0 and the possible contribution of machine learning, modularity application, and supply chain integration. Our findings inform a two-tier response strategy and a three-dimensional analytical framework which provide a theoretical basis for operationalizing Branding 4.0 and exploring, through a resource orchestration lens, how brands can respond to the related adoption challenges. Specifically, our findings show how machine learning's data analysis, knowledge conversion, and transmission capabilities could benefit both modular management and supply chain tasks to optimize product co-design processes and timely responses to customers' changing demands.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
竹林完成签到,获得积分10
刚刚
1秒前
我是老大应助张莹采纳,获得10
1秒前
丘比特应助HYT采纳,获得10
2秒前
发财完成签到,获得积分10
3秒前
成成完成签到,获得积分10
3秒前
3秒前
心杨发布了新的文献求助10
4秒前
靓丽紫雪完成签到,获得积分20
4秒前
6秒前
文文文发布了新的文献求助10
7秒前
7秒前
7秒前
yu完成签到,获得积分10
8秒前
Snoopy_Swan发布了新的文献求助10
8秒前
8R60d8应助懵懂的灭男采纳,获得10
10秒前
littlehie发布了新的文献求助30
10秒前
11秒前
传奇3应助小文cremen采纳,获得10
11秒前
12秒前
18746005898发布了新的文献求助10
15秒前
17秒前
17秒前
岳莹晓完成签到 ,获得积分10
20秒前
21秒前
淡淡的若冰应助18746005898采纳,获得10
21秒前
HYT发布了新的文献求助10
22秒前
lyn发布了新的文献求助20
23秒前
23秒前
依人如梦完成签到 ,获得积分10
24秒前
25秒前
27秒前
冰淇淋完成签到,获得积分10
28秒前
roclie驳回了Ava应助
28秒前
29秒前
yy发布了新的文献求助10
30秒前
31秒前
31秒前
若邻发布了新的文献求助10
33秒前
ardejiang发布了新的文献求助10
34秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 600
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3157329
求助须知:如何正确求助?哪些是违规求助? 2808824
关于积分的说明 7878475
捐赠科研通 2467158
什么是DOI,文献DOI怎么找? 1313222
科研通“疑难数据库(出版商)”最低求助积分说明 630369
版权声明 601919