Analysis on the Selection of the Appropriate Batch Size in CNN Neural Network

MNIST数据库 计算机科学 卷积神经网络 人工神经网络 选择(遗传算法) 人工智能 批处理 航程(航空) 机器学习 模式识别(心理学) 工程类 航空航天工程 程序设计语言
作者
Runze Lin
标识
DOI:10.1109/mlke55170.2022.00026
摘要

Batch Size is an essential hyper-parameter in deep learning. Different chosen batch sizes may lead to various testing and training accuracies and different runtimes. Choosing an optimal batch size is crucial when training a neural network. The scientific purpose of this paper is to find an appropriate range of batch size people can use in a convolutional neural network. The study is conducted by changing the hyper-parameter batch size and observing the influences when training some commonly used convolutional neural networks (Mnist, Fashion Mnist and CIFAR-10). The experiment results suggest it is more likely to obtain the most accurate model when choosing the mini-batch size between 16 and 64. In addition, the experiments discuss the effect of different sizes of datasets, neural network depth, and whether the batch size is a power of 2 on the conclusions. Therefore, when training a CNN model, people could first choose a batch size of 32 and decrease it for accuracy or increase it for efficiency.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
斯文败类应助科研通管家采纳,获得10
刚刚
刚刚
刚刚
领导范儿应助科研通管家采纳,获得10
刚刚
Owen应助科研通管家采纳,获得10
刚刚
大模型应助科研通管家采纳,获得10
刚刚
大模型应助科研通管家采纳,获得10
刚刚
bkagyin应助LLR采纳,获得10
刚刚
刚刚
ccc发布了新的文献求助10
刚刚
1秒前
蓝天应助Fashioner8351采纳,获得10
1秒前
Owen应助科研通管家采纳,获得10
1秒前
1秒前
大模型应助科研通管家采纳,获得10
1秒前
二斤瓜子完成签到,获得积分10
1秒前
今后应助科研通管家采纳,获得10
1秒前
1秒前
smottom应助科研通管家采纳,获得10
1秒前
今后应助科研通管家采纳,获得10
1秒前
1秒前
smottom应助科研通管家采纳,获得10
1秒前
1秒前
Orange应助科研通管家采纳,获得10
1秒前
1秒前
Orange应助科研通管家采纳,获得10
1秒前
彭于晏应助科研通管家采纳,获得10
1秒前
1秒前
彭于晏应助科研通管家采纳,获得10
1秒前
DTOU应助科研通管家采纳,获得10
1秒前
DTOU应助科研通管家采纳,获得10
1秒前
makabakap关注了科研通微信公众号
1秒前
ding应助科研通管家采纳,获得10
1秒前
bei发布了新的文献求助10
1秒前
Mark应助科研通管家采纳,获得10
1秒前
Mark应助科研通管家采纳,获得10
1秒前
英俊的铭应助科研通管家采纳,获得10
1秒前
1秒前
烟花应助科研通管家采纳,获得10
1秒前
自由依秋应助科研通管家采纳,获得10
1秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5785064
求助须知:如何正确求助?哪些是违规求助? 5685309
关于积分的说明 15466430
捐赠科研通 4914115
什么是DOI,文献DOI怎么找? 2645093
邀请新用户注册赠送积分活动 1592886
关于科研通互助平台的介绍 1547281