A novel feature space monitoring index of salinisation in the Yellow River Delta based on SENTINEL‐2B MSI images

归一化差异植被指数 红边 遥感 环境科学 地质学 海洋学 气候变化 高光谱成像
作者
Bing Guo,Fei Yang
出处
期刊:Land Degradation & Development [Wiley]
卷期号:33 (13): 2303-2316 被引量:2
标识
DOI:10.1002/ldr.4292
摘要

Abstract Most of previous studies utilized the surface parameters from LANDSAT images to construct the feature space monitoring index model of salinisation (salinization), and a few studies that have combined the feature space model with SENTINEL‐2B MSI images have been reported. In addition, the red edge index derived from SENTINEL‐2B MSI images can provide more detailed information to indicate the vegetation condition when monitoring salinized land ecosystems. Based on SENTINEL‐2B MSI images, this paper introduces seven typical parameters, namely NDVI, MSAVI, SI, Albedo, NDre1, NDre2, and NDre3 (red edge index) to construct two category features space models (point‐to‐line type and point‐to‐point type), and then, a novel salinisation monitoring index for use in the Yellow River Delta (YRD). Our main conclusions showed that: (1) the monitoring index model based on SENTINEL‐2B MSI images and a feature space model has high applicability for the salinisation monitoring in the YRD, with an average precision of R 2 = 0.8499; (2) the point‐to‐point monitoring index of soil salinisation based on the NDre1‐SI feature space model has the best inversion accuracy of R 2 = 0.9305 and RMSE = 0.9926; (3) the red edge index can better indicate the state and evolution process of soil salinisation. The salinisation monitoring models that included the red edge indexes have higher inversion accuracy with an average value of R 2 = 0.8650; (4) the soil salinisation in the YRD was more serious in its eastern and northeastern regions than other parts. The results provide a new technical and methodological approach for the prevention and treatment of regional salinisation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
byyyy完成签到,获得积分10
刚刚
量子星尘发布了新的文献求助10
1秒前
1秒前
6秒前
6秒前
CipherSage应助海绵小方块采纳,获得10
6秒前
张111发布了新的文献求助10
7秒前
聪明白羊完成签到,获得积分10
9秒前
曾经雪糕完成签到,获得积分10
9秒前
我是老大应助张111采纳,获得10
10秒前
科研通AI5应助Candice采纳,获得50
10秒前
April完成签到 ,获得积分10
11秒前
全圆佑的猫猫完成签到,获得积分10
11秒前
sos007完成签到 ,获得积分0
11秒前
华仔应助收手吧大哥采纳,获得50
11秒前
量子星尘发布了新的文献求助10
11秒前
11秒前
李富贵发布了新的文献求助10
12秒前
Mutsu完成签到 ,获得积分10
12秒前
13秒前
小二郎应助勤奋雨采纳,获得10
14秒前
14秒前
坚强煜城发布了新的文献求助10
15秒前
刘彤完成签到,获得积分10
16秒前
量子星尘发布了新的文献求助10
16秒前
汉堡包应助小C采纳,获得10
17秒前
18秒前
18秒前
Rein完成签到,获得积分10
18秒前
子俞完成签到 ,获得积分10
18秒前
Lemonade完成签到,获得积分10
21秒前
somous完成签到,获得积分10
21秒前
sunny完成签到 ,获得积分10
22秒前
22秒前
量子星尘发布了新的文献求助10
24秒前
眯眯眼的仇天完成签到 ,获得积分10
27秒前
专注的筝完成签到 ,获得积分10
28秒前
香蕉觅云应助zhangz采纳,获得10
29秒前
南湖秋水发布了新的文献求助10
29秒前
30秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The Insulin Resistance Epidemic: Uncovering the Root Cause of Chronic Disease  500
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3662463
求助须知:如何正确求助?哪些是违规求助? 3223261
关于积分的说明 9750686
捐赠科研通 2933115
什么是DOI,文献DOI怎么找? 1605919
邀请新用户注册赠送积分活动 758208
科研通“疑难数据库(出版商)”最低求助积分说明 734743