A content-based image retrieval system for the diagnosis of lymphoma using blood micrographs: An incorporation of deep learning with a traditional learning approach

人工智能 计算机科学 特征(语言学) 图像检索 淋巴瘤 模式识别(心理学) 特征提取 卷积神经网络 深度学习 降维 基于内容的图像检索 图像(数学) 机器学习 医学 病理 哲学 语言学
作者
Reena M. Roy,P. M. Ameer
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:145: 105463-105463 被引量:11
标识
DOI:10.1016/j.compbiomed.2022.105463
摘要

Lymphomas, or cancers of the lymphatic system, account for around half of all blood cancers diagnosed each year. Lymphoma is a condition that is difficult to diagnose, and accurate diagnosis is critical for effective treatment. Manual microscopic analysis of blood cells requires the involvement of medical experts, whose precision is dependent on their abilities, and it takes time. This paper describes a content-based image retrieval system that uses deep learning-based feature extraction and a traditional learning method for feature reduction to retrieve similar images from a database to aid early/initial lymphoma diagnosis. The proposed algorithm employs a pre-trained network called ResNet-101 to extract image features required to distinguish four types of cells: lymphoma cells, blasts, lymphocytes, and other cells. The issue of class imbalance is resolved by over-sampling the training data followed by data augmentation. Deep learning features are extracted using the activations of the feature layer in the pre-trained net, then dimensionality reduction techniques are used to select discriminant features for the image retrieval system. Euclidean distance is used as the similarity measure to retrieve similar images from the database. The experimentation uses a microscopic blood image dataset with 1673 leukocytes of the categories blasts, lymphoma, lymphocytes, and other cells. The proposed algorithm achieves 98.74% precision in lymphoma cell classification and 99.22% precision @10 for lymphoma cell image retrieval. Experimental findings confirm our approach's practicability and effectiveness. Extended studies endorse the idea of using the prescribed system in actual medical applications, helping doctors diagnose lymphoma, dramatically reducing human resource requirements.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
或者发布了新的文献求助10
刚刚
jihui完成签到,获得积分10
刚刚
echo发布了新的文献求助10
1秒前
研友_VZG7GZ应助旋风海兔采纳,获得10
2秒前
午夜时分收病人完成签到,获得积分10
2秒前
zzly发布了新的文献求助30
4秒前
jihui发布了新的文献求助10
4秒前
5秒前
5秒前
香蕉觅云应助CLubiy采纳,获得10
5秒前
木木完成签到,获得积分10
7秒前
9秒前
lx33101128发布了新的文献求助10
9秒前
9秒前
充电宝应助糖糖采纳,获得10
12秒前
双马尾小男生完成签到,获得积分10
12秒前
我是老大应助007采纳,获得10
12秒前
完美世界应助领衔采纳,获得10
13秒前
14秒前
14秒前
顺利毕业发布了新的文献求助10
15秒前
15秒前
kangwer完成签到,获得积分10
15秒前
刘静完成签到,获得积分10
16秒前
优秀含羞草完成签到,获得积分10
16秒前
酷酷应助开心的冰淇淋采纳,获得10
17秒前
龙龙关注了科研通微信公众号
18秒前
huazhangchina发布了新的文献求助10
18秒前
77发布了新的文献求助10
19秒前
槑槑完成签到,获得积分10
20秒前
elegancy完成签到,获得积分10
20秒前
Jasper应助虚心碧采纳,获得10
21秒前
21秒前
双马尾小男生2完成签到,获得积分10
21秒前
22秒前
22秒前
25秒前
小柳发布了新的文献求助30
25秒前
26秒前
26秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3141028
求助须知:如何正确求助?哪些是违规求助? 2791955
关于积分的说明 7801220
捐赠科研通 2448217
什么是DOI,文献DOI怎么找? 1302479
科研通“疑难数据库(出版商)”最低求助积分说明 626591
版权声明 601226