已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A content-based image retrieval system for the diagnosis of lymphoma using blood micrographs: An incorporation of deep learning with a traditional learning approach

人工智能 计算机科学 特征(语言学) 图像检索 淋巴瘤 模式识别(心理学) 特征提取 卷积神经网络 深度学习 降维 基于内容的图像检索 图像(数学) 机器学习 医学 病理 哲学 语言学
作者
Reena M. Roy,P. M. Ameer
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:145: 105463-105463 被引量:11
标识
DOI:10.1016/j.compbiomed.2022.105463
摘要

Lymphomas, or cancers of the lymphatic system, account for around half of all blood cancers diagnosed each year. Lymphoma is a condition that is difficult to diagnose, and accurate diagnosis is critical for effective treatment. Manual microscopic analysis of blood cells requires the involvement of medical experts, whose precision is dependent on their abilities, and it takes time. This paper describes a content-based image retrieval system that uses deep learning-based feature extraction and a traditional learning method for feature reduction to retrieve similar images from a database to aid early/initial lymphoma diagnosis. The proposed algorithm employs a pre-trained network called ResNet-101 to extract image features required to distinguish four types of cells: lymphoma cells, blasts, lymphocytes, and other cells. The issue of class imbalance is resolved by over-sampling the training data followed by data augmentation. Deep learning features are extracted using the activations of the feature layer in the pre-trained net, then dimensionality reduction techniques are used to select discriminant features for the image retrieval system. Euclidean distance is used as the similarity measure to retrieve similar images from the database. The experimentation uses a microscopic blood image dataset with 1673 leukocytes of the categories blasts, lymphoma, lymphocytes, and other cells. The proposed algorithm achieves 98.74% precision in lymphoma cell classification and 99.22% precision @10 for lymphoma cell image retrieval. Experimental findings confirm our approach's practicability and effectiveness. Extended studies endorse the idea of using the prescribed system in actual medical applications, helping doctors diagnose lymphoma, dramatically reducing human resource requirements.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
gemn完成签到,获得积分10
3秒前
KBDYD完成签到,获得积分10
5秒前
6秒前
xiongyh10完成签到,获得积分10
11秒前
纷踏不再发布了新的文献求助10
11秒前
奔波霸完成签到 ,获得积分10
17秒前
Cu完成签到 ,获得积分10
21秒前
25秒前
25秒前
炙热书白完成签到,获得积分10
26秒前
Rory完成签到 ,获得积分10
27秒前
科研完成签到 ,获得积分10
29秒前
想游泳的鹰完成签到,获得积分10
30秒前
FODCOC完成签到,获得积分10
30秒前
暴富发布了新的文献求助10
31秒前
zhoupu发布了新的文献求助10
31秒前
厌世小白龙关注了科研通微信公众号
34秒前
依依发布了新的文献求助10
35秒前
35秒前
暴富完成签到,获得积分20
38秒前
Shuo Yang发布了新的文献求助10
39秒前
GGBoy完成签到 ,获得积分10
40秒前
从容问寒完成签到 ,获得积分10
40秒前
Eins完成签到 ,获得积分10
40秒前
光之剑完成签到,获得积分10
43秒前
又村完成签到 ,获得积分10
45秒前
烊驼完成签到,获得积分10
48秒前
111完成签到 ,获得积分10
51秒前
Akim应助语冰采纳,获得10
51秒前
小二郎应助尾号6533采纳,获得10
52秒前
纷踏不再完成签到,获得积分10
58秒前
59秒前
冰冰完成签到 ,获得积分10
1分钟前
1分钟前
哇塞完成签到 ,获得积分10
1分钟前
语冰发布了新的文献求助10
1分钟前
1分钟前
kangkang发布了新的文献求助10
1分钟前
布丁仔完成签到,获得积分10
1分钟前
Jasper应助语冰采纳,获得10
1分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956943
求助须知:如何正确求助?哪些是违规求助? 3503011
关于积分的说明 11110935
捐赠科研通 3234007
什么是DOI,文献DOI怎么找? 1787694
邀请新用户注册赠送积分活动 870713
科研通“疑难数据库(出版商)”最低求助积分说明 802234