Poly-(butylene adipate-co-terephthalate) (PBAT) has become one of the most prevalent biodegradable plastic film materials owing to its good degradability, mechanical properties, and processability. However, the degradation time of this material was too fast and the functional period was short, which limited its application. Herein, three new tropolone-based UV absorbers (UVA-1C, UVA-4C and UVA-6C) were rationally designed and blended into PBAT. The PBAT/UVA films that formed were used against UV aging and prolonged the functional period of PBAT film. The three new absorbers were synthesized by bridging two tropolones using three different organic chains with different flexibility. Among them, the UVA-6C showed the strongest UV absorbance at around 238 nm and 320 nm. Consequently, the PBAT/UVA-6C film showed an extended validity period of 240 h in the Xenon lamp aging machine and a prolonged functional period of 8 d during the field application test when compared to pure PBAT. More importantly, a 7.8% increase in the maize yield was obtained under PBAT/UVA-6C film relative to pure PBAT film. Obviously, the novel prepared UVA-6C compound is a good candidate for UV absorption in PBAT, which makes PBAT/UVA-6C film more advantageous over pure PBAT in practical applications as biodegradable agricultural film.