Quad-polarimetric SAR sea state retrieval algorithm from Chinese Gaofen-3 wave mode imagettes via deep learning

合成孔径雷达 后发 海况 有效波高 计算机科学 遥感 旋光法 卷积神经网络 深度学习 人工神经网络 人工智能 风浪 气象学 算法 地质学 机器学习 散射 地理 海洋学 物理 光学
作者
He Wang,Jingsong Yang,Mingsen Lin,Weiwei Li,Jianhua Zhu,Lin Ren,Limin Cui
出处
期刊:Remote Sensing of Environment [Elsevier]
卷期号:273: 112969-112969 被引量:39
标识
DOI:10.1016/j.rse.2022.112969
摘要

Synthetic aperture radar (SAR) is a powerful tool for monitoring sea states in terms of the significant wave height (SWH). Regarding the specific wave mode, to date, the previous empirical models for estimating SWH from SAR data rely on single polarization. In the emerging deep learning era, few published quad-polarized SAR SWH retrieval algorithms have been based on machine learning technique, and whether quad-polarimetry improves the skill of wave height estimation remains a question. Here we propose a deep residual convolutional neural network-based SAR SWH retrieval algorithm in quad-polarization. By collocating WaveWatch III sea state hindcasts and all available archives of quad-polarized Chinese Gaofen-3 SAR imagettes in wave mode, a database with approximately 30,000 matchups was employed to establish our deeply-learned network. The GaoFen-3 significant wave height retrievals were validated against the hindcast dataset independent of training along with altimeter observations. The result of good consistency in terms of a root mean square error of 0.32 m (under sea state conditions of approximately 0.5–7.0 m) outperforms the existing Gaofen-3 wave height retrieval algorithms. Additionally, this paper introduces a discussion about the contribution of polarizations by comparing SWH derived from single-, dual- and quad-polarized deep convolutional neural networks. Single-polarized Gaofen-3 SAR data are found to be sufficient to provide accurate estimates compared to quad-polarization via a deep learning model under moderate sea conditions. Exploitation of SAR quad-polarimetry information will improve SAR wave height retrievals under high sea conditions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
淡然子轩完成签到,获得积分10
4秒前
笑点低的白莲完成签到,获得积分10
4秒前
李大白发布了新的文献求助10
4秒前
柠檬汽水发布了新的文献求助10
4秒前
XIL完成签到,获得积分10
5秒前
风起完成签到 ,获得积分10
6秒前
钱仍城发布了新的文献求助10
6秒前
waayu发布了新的文献求助10
6秒前
7秒前
7秒前
碧蓝映之发布了新的文献求助10
10秒前
hhh发布了新的文献求助10
10秒前
清脆初晴完成签到,获得积分10
13秒前
xwp发布了新的文献求助10
14秒前
乐乐应助waayu采纳,获得10
14秒前
course发布了新的文献求助10
14秒前
14秒前
18238379865完成签到,获得积分10
14秒前
钱仍城完成签到,获得积分10
19秒前
123321完成签到,获得积分10
20秒前
冬天回来661完成签到,获得积分10
20秒前
hhh完成签到,获得积分10
21秒前
24秒前
李安全完成签到,获得积分10
25秒前
执着亿先发布了新的文献求助10
28秒前
小二郎应助自信的鸵鸟采纳,获得10
29秒前
31秒前
在水一方应助沉默白猫采纳,获得10
31秒前
搜集达人应助科研通管家采纳,获得10
33秒前
4399com应助科研通管家采纳,获得10
33秒前
慕青应助科研通管家采纳,获得10
34秒前
RR完成签到,获得积分10
34秒前
ding应助胡桃采纳,获得10
36秒前
丰知然应助uwasa采纳,获得10
38秒前
orixero应助Hesm采纳,获得10
38秒前
xwp完成签到,获得积分10
40秒前
zsf发布了新的文献求助10
41秒前
u6e0c完成签到,获得积分10
42秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
How Maoism Was Made: Reconstructing China, 1949-1965 800
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3309791
求助须知:如何正确求助?哪些是违规求助? 2943034
关于积分的说明 8512084
捐赠科研通 2618067
什么是DOI,文献DOI怎么找? 1430810
科研通“疑难数据库(出版商)”最低求助积分说明 664324
邀请新用户注册赠送积分活动 649469