纳米笼
材料科学
超级电容器
层状双氢氧化物
纳米技术
氢氧化物
化学工程
电极
电化学
有机化学
催化作用
工程类
物理化学
化学
作者
Xiang Zhao,Hui Li,Mu Zhang,Wei Pan,Zhengtang Luo,Xudong Sun
标识
DOI:10.1021/acsami.2c08903
摘要
Layered double hydroxides (LDHs) have attracted broad attention as cathode materials for hybrid supercapacitors (HSCs) because of their ultrahigh theoretical specific capacitance, high compositional flexibility, and adjustable interlayer spacing. However, as reported, specific capacitance of LDHs is still far below the theoretical value, inspiring countless efforts to these ongoing challenges. Herein, a hierarchical nanocage structure assembled by NiCo-LDH nanosheet arrays was rationally designed and fabricated via a facile solvothermal method assisted by the ZIF-67 template. The transformation from the ZIF-67 template to this hollow structure is achieved by a synergistic effect involving the Kirkendall effect and the Ostwald ripening process. The enlarged specific surface area co-occurred with broadened interlayer spacing of LDH nanosheets by finely increasing the Ni concentration, leading to synchronous improvement of electron/ion transfer kinetics. The optimized NiCo-LDH-210 electrode displays a maximum specific capacitance of 2203.6 F g-1 at 2 A g-1, excellent rate capability, and satisfactory cycling stability because of the highly exposed active sites and shortened ion transport paths provided by vertically aligned LDH nanosheets together with the cavity. Furthermore, the assembled HSC device achieves a superior energy density of 57.3 Wh kg-1 with prominent cycling stability. Impressively, the design concept of complex construction derived from metal-organic frameworks (MOF) derivatives shows tremendous potential for use in energy storage systems.
科研通智能强力驱动
Strongly Powered by AbleSci AI