Predictive Model and Analysis of Psychological Depression Based on College Students’ Behavior Data Mining

萧条(经济学) 计算机科学 支持向量机 可靠性(半导体) 心理学 人工智能 机器学习 预测建模 构造(python库) 数据挖掘 临床心理学 宏观经济学 物理 经济 功率(物理) 程序设计语言 量子力学
作者
Dongchen Qu,Qing-Hua Guan
出处
期刊:Wireless Communications and Mobile Computing [Hindawi Limited]
卷期号:2022: 1-10 被引量:1
标识
DOI:10.1155/2022/5352283
摘要

Contemporary college students face all kinds of pressure and are easy to cause psychological problems. In order to make students and schools do a good job in preventing psychological depression, this paper proposes a student depression prediction model based on college students’ behavior data mining. Due to the shortcomings of large error and low reliability of prediction results in the traditional psychological depression prediction model, it is impossible to carry out large-scale psychological depression data analysis. In order to solve the defects of traditional psychological depression prediction model and improve the reliability of psychological depression prediction results, a psychological depression prediction model based on data mining technology is proposed. Firstly, the sensor is used to collect the signals related to psychological depression, and the signals are denoised to obtain high-quality psychological depression signals; then, the features are extracted from the psychological depression signals, and the support vector machine in data mining technology is used to train and learn the relationship between the features and the types of psychological depression, so as to construct the prediction model of psychological depression; finally, the simulation experiment of psychological depression prediction is carried out on MATLAB platform. The results show that the prediction accuracy of psychological depression of the traditional model is less than 85%, the prediction accuracy of psychological depression of the proposed model is more than 90%, and the time of psychological depression prediction modelling is reduced, which can meet the development trend of modern psychological depression prediction and analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
汉堡包应助berg采纳,获得10
2秒前
2秒前
乙醇发布了新的文献求助10
3秒前
小二郎应助hellohappy1201采纳,获得10
3秒前
JamesPei应助Li采纳,获得10
3秒前
杳鸢应助面向杂志编论文采纳,获得10
3秒前
IBMffff应助啦啦啦采纳,获得50
4秒前
4秒前
FuFu完成签到 ,获得积分10
4秒前
Daisy完成签到,获得积分10
5秒前
zqw发布了新的文献求助10
6秒前
7秒前
CodeCraft应助独特的凝荷采纳,获得10
7秒前
李健的小迷弟应助马克董采纳,获得10
9秒前
maaicui发布了新的文献求助10
10秒前
糖炒栗子完成签到,获得积分10
10秒前
黑夜中的黑猫完成签到,获得积分10
12秒前
13秒前
贪玩的访风完成签到 ,获得积分10
17秒前
钮祜lu完成签到,获得积分20
19秒前
19秒前
Wenfeifei完成签到,获得积分10
20秒前
慕青应助SRn嘿嘿采纳,获得10
21秒前
天天玩完成签到,获得积分10
23秒前
谷贝贝发布了新的文献求助30
24秒前
626发布了新的文献求助10
25秒前
zzd12318发布了新的文献求助100
26秒前
27秒前
叶液发布了新的文献求助10
27秒前
深情安青应助时尚的远望采纳,获得10
29秒前
Lee完成签到,获得积分10
30秒前
乙醇完成签到,获得积分10
30秒前
31秒前
chentian发布了新的文献求助10
31秒前
斯文败类应助wang采纳,获得10
32秒前
SRn嘿嘿发布了新的文献求助10
33秒前
33秒前
背后丹妗发布了新的文献求助10
34秒前
34秒前
HHH完成签到,获得积分10
34秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3148107
求助须知:如何正确求助?哪些是违规求助? 2799178
关于积分的说明 7833767
捐赠科研通 2456390
什么是DOI,文献DOI怎么找? 1307222
科研通“疑难数据库(出版商)”最低求助积分说明 628099
版权声明 601655