Differentiation of Benign From Malignant Parotid Gland Tumors Using Conventional MRI Based on Radiomics Nomogram

列线图 无线电技术 医学 接收机工作特性 曲线下面积 放射科 核医学 内科学
作者
Jinbo Qi,Ankang Gao,Xiaoli Ma,Yang Song,Guohua Zhao,Jie Bai,Eryuan Gao,Kai Zhao,Baohong Wen,Yong Zhang,Jingliang Cheng
出处
期刊:Frontiers in Oncology [Frontiers Media SA]
卷期号:12 被引量:4
标识
DOI:10.3389/fonc.2022.937050
摘要

We aimed to develop and validate radiomic nomograms to allow preoperative differentiation between benign- and malignant parotid gland tumors (BPGT and MPGT, respectively), as well as between pleomorphic adenomas (PAs) and Warthin tumors (WTs).This retrospective study enrolled 183 parotid gland tumors (68 PAs, 62 WTs, and 53 MPGTs) and divided them into training (n = 128) and testing (n = 55) cohorts. In total, 2553 radiomics features were extracted from fat-saturated T2-weighted images, apparent diffusion coefficient maps, and contrast-enhanced T1-weighted images to construct single-, double-, and multi-sequence combined radiomics models, respectively. The radiomics score (Rad-score) was calculated using the best radiomics model and clinical features to develop the radiomics nomogram. The receiver operating characteristic curve and area under the curve (AUC) were used to assess these models, and their performances were compared using DeLong's test. Calibration curves and decision curve analysis were used to assess the clinical usefulness of these models.The multi-sequence combined radiomics model exhibited better differentiation performance (BPGT vs. MPGT, AUC=0.863; PA vs. MPGT, AUC=0.929; WT vs. MPGT, AUC=0.825; PA vs. WT, AUC=0.927) than the single- and double sequence radiomics models. The nomogram based on the multi-sequence combined radiomics model and clinical features attained an improved classification performance (BPGT vs. MPGT, AUC=0.907; PA vs. MPGT, AUC=0.961; WT vs. MPGT, AUC=0.879; PA vs. WT, AUC=0.967).Radiomics nomogram yielded excellent diagnostic performance in differentiating BPGT from MPGT, PA from MPGT, and PA from WT.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
陈思思发布了新的文献求助10
1秒前
1秒前
2秒前
4秒前
VDC应助eth采纳,获得30
6秒前
6秒前
gazel完成签到,获得积分10
6秒前
6秒前
ML发布了新的文献求助10
7秒前
7秒前
小小王发布了新的文献求助10
8秒前
niki完成签到,获得积分10
9秒前
大力沛萍发布了新的文献求助10
9秒前
9秒前
胡蝶完成签到,获得积分10
9秒前
Wuliu完成签到,获得积分10
11秒前
张廷钰发布了新的文献求助30
11秒前
mk完成签到,获得积分10
11秒前
11秒前
JamesPei应助ASZXDW采纳,获得10
12秒前
嘉心糖发布了新的文献求助300
12秒前
无奈满天发布了新的文献求助10
12秒前
Jasper应助坚定惜梦采纳,获得10
13秒前
李爱国应助务实孤丝采纳,获得10
13秒前
美好斓发布了新的文献求助10
13秒前
13秒前
14秒前
小蘑菇应助陈思思采纳,获得10
15秒前
SciGPT应助荧惑采纳,获得10
16秒前
雪白的夜阑完成签到 ,获得积分10
16秒前
16秒前
慕青应助清爽熊猫采纳,获得10
17秒前
17秒前
17秒前
小蘑菇应助张廷钰采纳,获得30
18秒前
银河泛舟发布了新的文献求助30
18秒前
18秒前
19秒前
火星上的小蚂蚁完成签到,获得积分10
20秒前
无奈满天完成签到,获得积分10
20秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Continuum thermodynamics and material modelling 2000
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3469850
求助须知:如何正确求助?哪些是违规求助? 3063049
关于积分的说明 9081269
捐赠科研通 2753307
什么是DOI,文献DOI怎么找? 1510815
邀请新用户注册赠送积分活动 698084
科研通“疑难数据库(出版商)”最低求助积分说明 698028