Finding structure in time

连接主义 计算机科学 集合(抽象数据类型) 任务(项目管理) 代表(政治) 背景(考古学) 人工智能 安全性令牌 自然语言处理 语义记忆 理论计算机科学 认知 人工神经网络 心理学 神经科学 经济 管理 古生物学 程序设计语言 法学 政治 生物 计算机安全 政治学
作者
Jeffrey L. Elman
出处
期刊:Cognitive Science [Wiley]
卷期号:14 (2): 179-211 被引量:2900
标识
DOI:10.1016/0364-0213(90)90002-e
摘要

Time underlies many interesting human behaviors. Thus, the question of how to represent time in connectionist models is very important. One approach is to represent time implicitly by its effects on processing rather than explicitly (as in a spatial representation). The current report develops a proposal along these lines first described by Jordan (1986) which involves the use of recurrent links in order to provide networks with a dynamic memory. In this approach, hidden unit patterns are fed back to themselves: the internal representations which develop thus reflect task demands in the context of prior internal states. A set of simulations is reported which range from relatively simple problems (temporal version of XOR) to discovering syntactic/semantic features for words. The networks are able to learn interesting internal representations which incorporate task demands with memory demands: indeed, in this approach the notion of memory is inextricably bound up with task processing. These representations reveal a rich structure, which allows them to be highly context-dependent, while also expressing generalizations across classes of items. These representations suggest a method for representing lexical categories and the type/token distinction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
夜雨声烦完成签到,获得积分10
刚刚
MrCoolWu发布了新的文献求助10
刚刚
过时的不评完成签到,获得积分10
1秒前
1秒前
1秒前
月儿发布了新的文献求助10
2秒前
落落完成签到 ,获得积分10
2秒前
羊羊完成签到 ,获得积分20
2秒前
宁听白发布了新的文献求助10
3秒前
rookie_b0完成签到,获得积分10
3秒前
3秒前
wangyanyan完成签到,获得积分20
3秒前
标致小伙完成签到,获得积分10
4秒前
4秒前
Harlotte发布了新的文献求助10
5秒前
5秒前
潦草发布了新的文献求助10
5秒前
丘比特应助Ll采纳,获得10
6秒前
6秒前
yu完成签到 ,获得积分10
6秒前
小蘑菇应助zzznznnn采纳,获得10
6秒前
Orange应助俊秀的白猫采纳,获得30
7秒前
深情安青应助小可采纳,获得10
7秒前
7秒前
情怀应助pearl采纳,获得10
7秒前
8秒前
所所应助cybbbbbb采纳,获得10
8秒前
果汁发布了新的文献求助10
8秒前
9秒前
9秒前
Lucas应助柚子采纳,获得10
9秒前
MADKAI发布了新的文献求助10
9秒前
10秒前
爆米花应助咕咕咕采纳,获得10
10秒前
zxy发布了新的文献求助10
10秒前
11秒前
醉人的仔发布了新的文献求助10
11秒前
daguan完成签到,获得积分10
11秒前
桐桐应助nikai采纳,获得10
11秒前
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759