An Efficient Tongue Segmentation Model Based on U-Net Framework

舌头 计算机科学 分割 人工智能 图像分割 计算机视觉 特征(语言学) 模式识别(心理学) 稳健性(进化) 图像处理 图像(数学) 医学 语言学 哲学 生物化学 化学 病理 基因
作者
Qunsheng Ruan,Qingfeng Wu,Junfeng Yao,Yingdong Wang,Hsien‐Wei Tseng,Zhiling Zhang
出处
期刊:International Journal of Pattern Recognition and Artificial Intelligence [World Scientific]
卷期号:35 (16) 被引量:6
标识
DOI:10.1142/s0218001421540355
摘要

In the intelligently processing of the tongue image, one of the most important tasks is to accurately segment the tongue body from a whole tongue image, and the good quality of tongue body edge processing is of great significance for the relevant tongue feature extraction. To improve the performance of the segmentation model for tongue images, we propose an efficient tongue segmentation model based on U-Net. Three important studies are launched, including optimizing the model’s main network, innovating a new network to specially handle tongue edge cutting and proposing a weighted binary cross-entropy loss function. The purpose of optimizing the tongue image main segmentation network is to make the model recognize the foreground and background features for the tongue image as well as possible. A novel tongue edge segmentation network is used to focus on handling the tongue edge because the edge of the tongue contains a number of important information. Furthermore, the advantageous loss function proposed is to be adopted to enhance the pixel supervision corresponding to tongue images. Moreover, thanks to a lack of tongue image resources on Traditional Chinese Medicine (TCM), some special measures are adopted to augment training samples. Various comparing experiments on two datasets were conducted to verify the performance of the segmentation model. The experimental results indicate that the loss rate of our model converges faster than the others. It is proved that our model has better stability and robustness of segmentation for tongue image from poor environment. The experimental results also indicate that our model outperforms the state-of-the-art ones in aspects of the two most important tongue image segmentation indexes: IoU and Dice. Moreover, experimental results on augmentation samples demonstrate our model have better performances.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
飞盘通完成签到,获得积分10
刚刚
春日无尾熊完成签到 ,获得积分10
刚刚
1秒前
hyy发布了新的文献求助10
1秒前
朱朱发布了新的文献求助10
1秒前
飞盘通发布了新的文献求助10
2秒前
2秒前
隐形曼青应助天气采纳,获得10
2秒前
树袋发布了新的文献求助30
3秒前
微笑白萱完成签到,获得积分10
3秒前
干净山灵发布了新的文献求助30
4秒前
planA完成签到,获得积分10
5秒前
星辰大海应助风行域采纳,获得30
5秒前
墨客应助zimo采纳,获得10
5秒前
5秒前
痴情的飞鸟完成签到,获得积分10
6秒前
7秒前
8秒前
8秒前
8秒前
8秒前
9秒前
赵赵赵发布了新的文献求助10
9秒前
CipherSage应助苏苏采纳,获得10
9秒前
10秒前
10秒前
Sun完成签到,获得积分10
11秒前
量子星尘发布了新的文献求助10
12秒前
Xiehf发布了新的文献求助10
12秒前
12秒前
小蘑菇应助山猫采纳,获得10
12秒前
嗒帅发布了新的文献求助10
12秒前
12秒前
夜休2024发布了新的文献求助10
12秒前
欣慰的小甜瓜完成签到 ,获得积分10
13秒前
13秒前
13秒前
14秒前
稳重老魏发布了新的文献求助10
14秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5532190
求助须知:如何正确求助?哪些是违规求助? 4620957
关于积分的说明 14575781
捐赠科研通 4560709
什么是DOI,文献DOI怎么找? 2498949
邀请新用户注册赠送积分活动 1478927
关于科研通互助平台的介绍 1450190