An Efficient Tongue Segmentation Model Based on U-Net Framework

舌头 计算机科学 分割 人工智能 图像分割 计算机视觉 特征(语言学) 模式识别(心理学) 稳健性(进化) 图像处理 图像(数学) 医学 语言学 哲学 生物化学 化学 病理 基因
作者
Qunsheng Ruan,Qingfeng Wu,Junfeng Yao,Yingdong Wang,Hsien‐Wei Tseng,Zhiling Zhang
出处
期刊:International Journal of Pattern Recognition and Artificial Intelligence [World Scientific]
卷期号:35 (16) 被引量:6
标识
DOI:10.1142/s0218001421540355
摘要

In the intelligently processing of the tongue image, one of the most important tasks is to accurately segment the tongue body from a whole tongue image, and the good quality of tongue body edge processing is of great significance for the relevant tongue feature extraction. To improve the performance of the segmentation model for tongue images, we propose an efficient tongue segmentation model based on U-Net. Three important studies are launched, including optimizing the model’s main network, innovating a new network to specially handle tongue edge cutting and proposing a weighted binary cross-entropy loss function. The purpose of optimizing the tongue image main segmentation network is to make the model recognize the foreground and background features for the tongue image as well as possible. A novel tongue edge segmentation network is used to focus on handling the tongue edge because the edge of the tongue contains a number of important information. Furthermore, the advantageous loss function proposed is to be adopted to enhance the pixel supervision corresponding to tongue images. Moreover, thanks to a lack of tongue image resources on Traditional Chinese Medicine (TCM), some special measures are adopted to augment training samples. Various comparing experiments on two datasets were conducted to verify the performance of the segmentation model. The experimental results indicate that the loss rate of our model converges faster than the others. It is proved that our model has better stability and robustness of segmentation for tongue image from poor environment. The experimental results also indicate that our model outperforms the state-of-the-art ones in aspects of the two most important tongue image segmentation indexes: IoU and Dice. Moreover, experimental results on augmentation samples demonstrate our model have better performances.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
拾柒完成签到,获得积分10
刚刚
2秒前
舒适乐安完成签到,获得积分10
4秒前
4秒前
5秒前
共享精神应助iukoi33采纳,获得10
5秒前
6秒前
科研通AI5应助游一采纳,获得10
7秒前
小蘑菇应助zz采纳,获得10
7秒前
8秒前
小蘑菇应助xxxhhh采纳,获得10
8秒前
哈哈完成签到,获得积分10
8秒前
9秒前
legoman发布了新的文献求助10
9秒前
11秒前
11秒前
leiyang49完成签到,获得积分10
11秒前
麦子发布了新的文献求助10
11秒前
12秒前
11发布了新的文献求助10
13秒前
HongY完成签到,获得积分10
13秒前
黄小北发布了新的文献求助10
14秒前
Lucas应助xu采纳,获得10
14秒前
14秒前
three发布了新的文献求助10
14秒前
qnwang完成签到,获得积分10
14秒前
hhhblabla应助爱哭的小女孩采纳,获得10
14秒前
legoman完成签到,获得积分10
15秒前
淡然的寻冬完成签到 ,获得积分10
16秒前
16秒前
16秒前
18秒前
18秒前
victorchen完成签到,获得积分10
19秒前
四月完成签到 ,获得积分10
20秒前
桑尼号完成签到,获得积分10
20秒前
爱哭的小女孩完成签到,获得积分20
20秒前
21秒前
ding应助麦子采纳,获得10
21秒前
LittleTT发布了新的文献求助10
22秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3992495
求助须知:如何正确求助?哪些是违规求助? 3533431
关于积分的说明 11262369
捐赠科研通 3273025
什么是DOI,文献DOI怎么找? 1805895
邀请新用户注册赠送积分活动 882800
科研通“疑难数据库(出版商)”最低求助积分说明 809496