An Efficient Tongue Segmentation Model Based on U-Net Framework

舌头 计算机科学 分割 人工智能 图像分割 计算机视觉 特征(语言学) 模式识别(心理学) 稳健性(进化) 图像处理 图像(数学) 医学 语言学 哲学 生物化学 化学 病理 基因
作者
Qunsheng Ruan,Qingfeng Wu,Junfeng Yao,Yingdong Wang,Hsien‐Wei Tseng,Zhiling Zhang
出处
期刊:International Journal of Pattern Recognition and Artificial Intelligence [World Scientific]
卷期号:35 (16) 被引量:6
标识
DOI:10.1142/s0218001421540355
摘要

In the intelligently processing of the tongue image, one of the most important tasks is to accurately segment the tongue body from a whole tongue image, and the good quality of tongue body edge processing is of great significance for the relevant tongue feature extraction. To improve the performance of the segmentation model for tongue images, we propose an efficient tongue segmentation model based on U-Net. Three important studies are launched, including optimizing the model’s main network, innovating a new network to specially handle tongue edge cutting and proposing a weighted binary cross-entropy loss function. The purpose of optimizing the tongue image main segmentation network is to make the model recognize the foreground and background features for the tongue image as well as possible. A novel tongue edge segmentation network is used to focus on handling the tongue edge because the edge of the tongue contains a number of important information. Furthermore, the advantageous loss function proposed is to be adopted to enhance the pixel supervision corresponding to tongue images. Moreover, thanks to a lack of tongue image resources on Traditional Chinese Medicine (TCM), some special measures are adopted to augment training samples. Various comparing experiments on two datasets were conducted to verify the performance of the segmentation model. The experimental results indicate that the loss rate of our model converges faster than the others. It is proved that our model has better stability and robustness of segmentation for tongue image from poor environment. The experimental results also indicate that our model outperforms the state-of-the-art ones in aspects of the two most important tongue image segmentation indexes: IoU and Dice. Moreover, experimental results on augmentation samples demonstrate our model have better performances.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
今后应助陈晨采纳,获得10
1秒前
4秒前
该干饭了发布了新的文献求助10
4秒前
6秒前
情怀应助shen采纳,获得30
6秒前
NN完成签到,获得积分10
7秒前
温医第一打野完成签到,获得积分10
8秒前
9秒前
早安发布了新的文献求助10
10秒前
浮游应助该干饭了采纳,获得10
11秒前
12秒前
BowieHuang应助光亮的太阳采纳,获得10
13秒前
科目三应助忧郁绿柏采纳,获得10
14秒前
小肥羊完成签到 ,获得积分10
19秒前
远方发布了新的文献求助30
19秒前
过眼云烟完成签到,获得积分10
20秒前
大模型应助简单的小鸽子采纳,获得30
24秒前
SciGPT应助萌萌哒瓢酱采纳,获得10
28秒前
30秒前
xxOsAsAtGeNb发布了新的文献求助10
31秒前
默默的傲云完成签到,获得积分10
31秒前
Dsunflower完成签到 ,获得积分10
31秒前
wwww完成签到 ,获得积分0
31秒前
32秒前
lll完成签到 ,获得积分10
33秒前
34秒前
科研通AI6应助baiyang99采纳,获得10
34秒前
Giggle完成签到,获得积分10
37秒前
陈晨发布了新的文献求助10
38秒前
天天快乐应助粗心的善若采纳,获得10
38秒前
39秒前
超级感谢大佬滴帮助完成签到,获得积分10
40秒前
43秒前
光能使者完成签到,获得积分10
44秒前
45秒前
46秒前
qiuli完成签到,获得积分10
46秒前
50秒前
冂xx易云完成签到,获得积分10
52秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
Essential Guides for Early Career Teachers: Mental Well-being and Self-care 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5563681
求助须知:如何正确求助?哪些是违规求助? 4648553
关于积分的说明 14685532
捐赠科研通 4590511
什么是DOI,文献DOI怎么找? 2518648
邀请新用户注册赠送积分活动 1491204
关于科研通互助平台的介绍 1462478