舌头
计算机科学
分割
人工智能
图像分割
计算机视觉
特征(语言学)
模式识别(心理学)
稳健性(进化)
图像处理
图像(数学)
医学
基因
生物化学
哲学
病理
语言学
化学
作者
Qunsheng Ruan,Qingfeng Wu,Junfeng Yao,Yingdong Wang,Hsien‐Wei Tseng,Zhiling Zhang
标识
DOI:10.1142/s0218001421540355
摘要
In the intelligently processing of the tongue image, one of the most important tasks is to accurately segment the tongue body from a whole tongue image, and the good quality of tongue body edge processing is of great significance for the relevant tongue feature extraction. To improve the performance of the segmentation model for tongue images, we propose an efficient tongue segmentation model based on U-Net. Three important studies are launched, including optimizing the model’s main network, innovating a new network to specially handle tongue edge cutting and proposing a weighted binary cross-entropy loss function. The purpose of optimizing the tongue image main segmentation network is to make the model recognize the foreground and background features for the tongue image as well as possible. A novel tongue edge segmentation network is used to focus on handling the tongue edge because the edge of the tongue contains a number of important information. Furthermore, the advantageous loss function proposed is to be adopted to enhance the pixel supervision corresponding to tongue images. Moreover, thanks to a lack of tongue image resources on Traditional Chinese Medicine (TCM), some special measures are adopted to augment training samples. Various comparing experiments on two datasets were conducted to verify the performance of the segmentation model. The experimental results indicate that the loss rate of our model converges faster than the others. It is proved that our model has better stability and robustness of segmentation for tongue image from poor environment. The experimental results also indicate that our model outperforms the state-of-the-art ones in aspects of the two most important tongue image segmentation indexes: IoU and Dice. Moreover, experimental results on augmentation samples demonstrate our model have better performances.
科研通智能强力驱动
Strongly Powered by AbleSci AI