亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

An Efficient Tongue Segmentation Model Based on U-Net Framework

舌头 计算机科学 分割 人工智能 图像分割 计算机视觉 特征(语言学) 模式识别(心理学) 稳健性(进化) 图像处理 图像(数学) 医学 语言学 哲学 生物化学 化学 病理 基因
作者
Qunsheng Ruan,Qingfeng Wu,Junfeng Yao,Yingdong Wang,Hsien‐Wei Tseng,Zhiling Zhang
出处
期刊:International Journal of Pattern Recognition and Artificial Intelligence [World Scientific]
卷期号:35 (16) 被引量:6
标识
DOI:10.1142/s0218001421540355
摘要

In the intelligently processing of the tongue image, one of the most important tasks is to accurately segment the tongue body from a whole tongue image, and the good quality of tongue body edge processing is of great significance for the relevant tongue feature extraction. To improve the performance of the segmentation model for tongue images, we propose an efficient tongue segmentation model based on U-Net. Three important studies are launched, including optimizing the model’s main network, innovating a new network to specially handle tongue edge cutting and proposing a weighted binary cross-entropy loss function. The purpose of optimizing the tongue image main segmentation network is to make the model recognize the foreground and background features for the tongue image as well as possible. A novel tongue edge segmentation network is used to focus on handling the tongue edge because the edge of the tongue contains a number of important information. Furthermore, the advantageous loss function proposed is to be adopted to enhance the pixel supervision corresponding to tongue images. Moreover, thanks to a lack of tongue image resources on Traditional Chinese Medicine (TCM), some special measures are adopted to augment training samples. Various comparing experiments on two datasets were conducted to verify the performance of the segmentation model. The experimental results indicate that the loss rate of our model converges faster than the others. It is proved that our model has better stability and robustness of segmentation for tongue image from poor environment. The experimental results also indicate that our model outperforms the state-of-the-art ones in aspects of the two most important tongue image segmentation indexes: IoU and Dice. Moreover, experimental results on augmentation samples demonstrate our model have better performances.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
倪妮发布了新的文献求助30
11秒前
LYYYY完成签到 ,获得积分10
25秒前
白天亮完成签到,获得积分10
39秒前
44秒前
44秒前
winfree完成签到 ,获得积分10
59秒前
闪闪蜜粉完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
棠七完成签到,获得积分10
1分钟前
棠七发布了新的文献求助10
1分钟前
大只仙仙完成签到 ,获得积分10
1分钟前
倪妮发布了新的文献求助30
1分钟前
2分钟前
饼干肥熊完成签到 ,获得积分10
2分钟前
ymr发布了新的文献求助10
2分钟前
量子星尘发布了新的文献求助150
2分钟前
2分钟前
倪妮发布了新的文献求助10
2分钟前
Hiraeth完成签到 ,获得积分10
2分钟前
2分钟前
111发布了新的文献求助10
2分钟前
3分钟前
movoandy发布了新的文献求助10
3分钟前
浮游应助movoandy采纳,获得10
3分钟前
天天快乐应助movoandy采纳,获得10
3分钟前
Jasper应助zzz采纳,获得10
3分钟前
倪妮发布了新的文献求助10
3分钟前
corleeang完成签到 ,获得积分10
3分钟前
半城烟火完成签到 ,获得积分10
4分钟前
4分钟前
neversay4ever完成签到 ,获得积分10
4分钟前
4分钟前
4分钟前
倪妮发布了新的文献求助10
4分钟前
4分钟前
wanci应助arthur采纳,获得10
4分钟前
5分钟前
科研通AI5应助江洋大盗采纳,获得10
5分钟前
5分钟前
高分求助中
Comprehensive Toxicology Fourth Edition 2026 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Target genes for RNAi in pest control: A comprehensive overview 600
Master Curve-Auswertungen und Untersuchung des Größeneffekts für C(T)-Proben - aktuelle Erkenntnisse zur Untersuchung des Master Curve Konzepts für ferritisches Gusseisen mit Kugelgraphit bei dynamischer Beanspruchung (Projekt MCGUSS) 500
Design and Development of A CMOS Integrated Multimodal Sensor System with Carbon Nano-electrodes for Biosensor Applications 500
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5104948
求助须知:如何正确求助?哪些是违规求助? 4315039
关于积分的说明 13443949
捐赠科研通 4143462
什么是DOI,文献DOI怎么找? 2270419
邀请新用户注册赠送积分活动 1272932
关于科研通互助平台的介绍 1209954