An Efficient Tongue Segmentation Model Based on U-Net Framework

舌头 计算机科学 分割 人工智能 图像分割 计算机视觉 特征(语言学) 模式识别(心理学) 稳健性(进化) 图像处理 图像(数学) 医学 语言学 哲学 生物化学 化学 病理 基因
作者
Qunsheng Ruan,Qingfeng Wu,Junfeng Yao,Yingdong Wang,Hsien‐Wei Tseng,Zhiling Zhang
出处
期刊:International Journal of Pattern Recognition and Artificial Intelligence [World Scientific]
卷期号:35 (16) 被引量:6
标识
DOI:10.1142/s0218001421540355
摘要

In the intelligently processing of the tongue image, one of the most important tasks is to accurately segment the tongue body from a whole tongue image, and the good quality of tongue body edge processing is of great significance for the relevant tongue feature extraction. To improve the performance of the segmentation model for tongue images, we propose an efficient tongue segmentation model based on U-Net. Three important studies are launched, including optimizing the model’s main network, innovating a new network to specially handle tongue edge cutting and proposing a weighted binary cross-entropy loss function. The purpose of optimizing the tongue image main segmentation network is to make the model recognize the foreground and background features for the tongue image as well as possible. A novel tongue edge segmentation network is used to focus on handling the tongue edge because the edge of the tongue contains a number of important information. Furthermore, the advantageous loss function proposed is to be adopted to enhance the pixel supervision corresponding to tongue images. Moreover, thanks to a lack of tongue image resources on Traditional Chinese Medicine (TCM), some special measures are adopted to augment training samples. Various comparing experiments on two datasets were conducted to verify the performance of the segmentation model. The experimental results indicate that the loss rate of our model converges faster than the others. It is proved that our model has better stability and robustness of segmentation for tongue image from poor environment. The experimental results also indicate that our model outperforms the state-of-the-art ones in aspects of the two most important tongue image segmentation indexes: IoU and Dice. Moreover, experimental results on augmentation samples demonstrate our model have better performances.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
汉堡包应助隋玉采纳,获得10
1秒前
隐形曼青应助znlion采纳,获得10
1秒前
YHDing发布了新的文献求助10
1秒前
执着的弱完成签到,获得积分10
1秒前
2秒前
12138完成签到,获得积分10
3秒前
无心发布了新的文献求助10
4秒前
无限的雨梅完成签到 ,获得积分10
4秒前
999完成签到,获得积分10
5秒前
6秒前
ZhS_完成签到,获得积分20
6秒前
li完成签到 ,获得积分10
7秒前
kyer完成签到 ,获得积分10
7秒前
7秒前
7秒前
年轻冰萍发布了新的文献求助10
8秒前
小二郎应助sx采纳,获得10
8秒前
9秒前
10秒前
图图完成签到 ,获得积分10
11秒前
Hilda007应助成功上岸采纳,获得10
12秒前
刘字绮发布了新的文献求助10
12秒前
cc完成签到,获得积分20
13秒前
13秒前
14秒前
Criminology34给曦玥的求助进行了留言
14秒前
123发布了新的文献求助10
15秒前
16秒前
GGZ发布了新的文献求助10
16秒前
777完成签到,获得积分10
16秒前
Yingkun_Xu发布了新的文献求助10
16秒前
hope完成签到 ,获得积分10
17秒前
科研通AI2S应助聪慧雪糕采纳,获得10
18秒前
FashionBoy应助风清扬采纳,获得30
18秒前
18秒前
打打应助科研通管家采纳,获得10
19秒前
科研通AI6应助科研通管家采纳,获得10
19秒前
19秒前
星睿发布了新的文献求助10
19秒前
19秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5344089
求助须知:如何正确求助?哪些是违规求助? 4479449
关于积分的说明 13942876
捐赠科研通 4376498
什么是DOI,文献DOI怎么找? 2404811
邀请新用户注册赠送积分活动 1397185
关于科研通互助平台的介绍 1369514