Geometric-thermal error control system for gear profile grinding machine

计算机科学 传热 算法 控制理论(社会学) 模拟 机械工程
作者
Jialan Liu,Chi Ma,Hongquan Gui,Mengyuan Li
出处
期刊:Advanced Engineering Informatics [Elsevier BV]
卷期号:52: 101618-101618
标识
DOI:10.1016/j.aei.2022.101618
摘要

• GTECS is designed for gear profile grinding machine. • Transfer learning model of STO-BTCN model is established. • Long-term memorizing behavior is demonstrated. • Geometric error models of linear axes are constructed. • Thermal error models of linear axes are established based on deformation principle. Geometric and thermal errors, which are the main error factors for reducing the machining accuracy, should be controlled. But the control effect is poor, which is a stumbling block to limit the wide application of the error control. In this study, a geometric-thermal error control system (GTECS) is designed for gear profile grinding machines. For the mist layer of GTECS, the wireless sensor network is designed to realize the data collection and transfer. For the edge layer of GTECS, the edge controller is designed to conduct the sensitive error analysis. For the fog layer, the control module is designed to conduct the geometric and thermal error prediction. In this layer, the analytical model of the rolling guide/slider system is proposed to calculate geometric errors of X- and Z- axes, and the thermal boundary conditions are calculated, and the thermal error models of the spindle and C-axis are proposed based on transfer learning model (TLM) of the sooty tern optimization (STO)-bilinear temporal convolutional network (BTCN). For the cloud layer, the data computation and management are realized by Hadoop and Yet Another Resource Negotiator (YARN), respectively. The geometric and thermal error models of X- and Z-axes, thermal errors models of the spindle and C-axis, and multi-source error model are embedded into it. With the execution of GTECS, the geometric precision for the total tooth profile deviation and tooth profile deviation are increased from ISO level 8 to ISO level 5 and from ISO level 5 to ISO level 3, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
vin应助肥而不腻的羚羊采纳,获得10
1秒前
华仔应助怕孤单的破茧采纳,获得10
2秒前
4秒前
CipherSage应助672采纳,获得10
5秒前
dsjlove完成签到,获得积分20
6秒前
7秒前
等一只ya完成签到,获得积分10
7秒前
虚影完成签到,获得积分10
8秒前
伍铭完成签到 ,获得积分10
11秒前
俏皮的绝山完成签到,获得积分10
11秒前
11秒前
孙燕应助JIANGSHUI采纳,获得50
12秒前
唐禹嘉完成签到 ,获得积分10
13秒前
小超发布了新的文献求助10
16秒前
16秒前
科研通AI5应助YJ888采纳,获得10
17秒前
老干部完成签到,获得积分10
19秒前
随风完成签到,获得积分10
20秒前
21秒前
ycool完成签到 ,获得积分10
22秒前
23秒前
hxy123完成签到,获得积分10
23秒前
23秒前
ablesic.rong发布了新的文献求助10
25秒前
张绵羊完成签到 ,获得积分10
27秒前
香蕉觅云应助booooo采纳,获得10
27秒前
hxy123发布了新的文献求助10
27秒前
28秒前
22222发布了新的文献求助30
29秒前
辛辛应助来来采纳,获得10
30秒前
修辛发布了新的文献求助10
31秒前
32秒前
热心市民小红花应助bbh采纳,获得10
34秒前
ED应助机智太阳采纳,获得10
34秒前
臻灏完成签到,获得积分10
34秒前
英俊白莲完成签到,获得积分10
35秒前
35秒前
痴情的茈发布了新的文献求助10
35秒前
CHN完成签到 ,获得积分10
35秒前
36秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989550
求助须知:如何正确求助?哪些是违规求助? 3531774
关于积分的说明 11254747
捐赠科研通 3270278
什么是DOI,文献DOI怎么找? 1804966
邀请新用户注册赠送积分活动 882125
科研通“疑难数据库(出版商)”最低求助积分说明 809176