🔥【活动通知】:科研通第二届『应助活动周』重磅启航,3月24-30日求助秒级响应🚀,千元现金等你拿。这个春天,让互助之光璀璨绽放!查看详情

Exploring molecular dynamics simulation to predict binding with ocular mucin: An in silico approach for screening mucoadhesive materials for ocular retentive delivery systems

黏膜黏附 生物信息学 化学 药物输送 粘蛋白 体内 生物物理学 纳米载体 纳米技术 毒品携带者 材料科学 生物化学 生物 基因 生物技术
作者
Rohan Pai,Jasmin Monpara,Pradeep R. Vavia
出处
期刊:Journal of Controlled Release [Elsevier]
卷期号:309: 190-202 被引量:41
标识
DOI:10.1016/j.jconrel.2019.07.037
摘要

In recent times, molecular dynamic (MD) simulations have been applied in the area of drug delivery, as an in silico tool to predict the behaviour of nanoparticles with respect to their interaction with larger biological entities like bilayer membranes, DNA and dermal surface. However, the predictions must be systematically evaluated by extensive studies with actual biological entities in order to deem the in silico models accurate. Thus, in the present study, MD simulation was used to screen ligands with respect to ocular mucoadhesion. Mucin-4, a cell surface-associated mucin was selected as the substrate for the in silico study due to its abundance across the ocular surface. The ligands were then incorporated into a delivery system like nanostructured lipid carriers (NLC) and assessed for mucoadhesion by relevant in vitro and in vivo techniques. The in silico study suggested chitosan oligosaccharide (COS) to have an extensive mucoadhesive potential towards ocular mucin followed by stearylamine (STA) and cetrimonium bromide (CTAB) which showed intermediate and low mucoadhesion respectively. The corresponding in vitro assessment by spectrophotometry and nanoparticle tracking analysis showed a similar outcome wherein COS was found to be extensively mucoadhesive, followed by both STA and CTAB, which showed mucoadhesion to a nearly equal extent. The findings of in vivo confocal imaging following topical administration to rats showed that while COS and STA adhered extensively to the ocular surface, CTAB showed negligible adhesion. MD simulation was thus found to accurately predict interactions critical to mucoadhesion and the same could be fairly correlated well by relevant mucoadhesion studies both in vitro and in vivo.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
bvuiragybv发布了新的文献求助10
刚刚
刚刚
####完成签到 ,获得积分10
1秒前
ss发布了新的文献求助10
1秒前
123657发布了新的文献求助10
1秒前
temp发布了新的文献求助10
1秒前
3秒前
xuyanfeng发布了新的文献求助10
4秒前
hucchongzi应助seven采纳,获得10
6秒前
科研通AI5应助seven采纳,获得10
6秒前
PG完成签到 ,获得积分10
6秒前
FK7发布了新的文献求助30
6秒前
6秒前
1111发布了新的文献求助10
7秒前
茉莉园完成签到,获得积分10
7秒前
天天快乐应助bvuiragybv采纳,获得10
8秒前
迟大猫应助个性醉波采纳,获得10
8秒前
沉静的灵安完成签到,获得积分10
9秒前
爆米花应助qqqqqqqq采纳,获得10
11秒前
思源应助qqqqqqqq采纳,获得10
11秒前
天天快乐应助qqqqqqqq采纳,获得10
11秒前
深情安青应助qqqqqqqq采纳,获得10
11秒前
FashionBoy应助qqqqqqqq采纳,获得10
11秒前
大模型应助qqqqqqqq采纳,获得10
11秒前
我是老大应助qqqqqqqq采纳,获得10
11秒前
领导范儿应助qqqqqqqq采纳,获得10
11秒前
星辰大海应助qqqqqqqq采纳,获得10
11秒前
乐乐应助qqqqqqqq采纳,获得10
11秒前
舒心水云发布了新的文献求助10
11秒前
12秒前
temp完成签到,获得积分10
12秒前
13秒前
16秒前
李健的粉丝团团长应助move采纳,获得10
16秒前
16秒前
18秒前
19秒前
酷波er应助科研小白采纳,获得10
19秒前
没有昵称发布了新的文献求助10
20秒前
lizhaonian发布了新的文献求助10
21秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Teaching language in context (3rd edition) by Derewianka, Beverly; Jones, Pauline 610
Generative Machine Learning Models in Medical Image Computing 590
Barth, Derrida and the Language of Theology 500
2024-2030年中国聚异戊二烯橡胶行业市场现状调查及发展前景研判报告 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3600008
求助须知:如何正确求助?哪些是违规求助? 3168702
关于积分的说明 9559090
捐赠科研通 2875140
什么是DOI,文献DOI怎么找? 1578599
邀请新用户注册赠送积分活动 742208
科研通“疑难数据库(出版商)”最低求助积分说明 725097