Application of Hexagonal Boron Nitride to a Heat-Transfer Medium of an InGaN/GaN Quantum-Well Green LED

材料科学 发光二极管 光电子学 蓝宝石 传热 氮化物 二极管 包层(金属加工) 六方氮化硼 图层(电子) 复合材料 光学 纳米技术 激光器 热力学 石墨烯 物理
作者
Ilgyu Choi,Kwanjae Lee,Cheul‐Ro Lee,Joo Song Lee,Soo Min Kim,Kwang‐Un Jeong,Jin Soo Kim
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:11 (20): 18876-18884 被引量:27
标识
DOI:10.1021/acsami.9b05320
摘要

Group III-nitride light-emitting diodes (LEDs) fabricated on sapphire substrates typically suffer from insufficient heat dissipation, largely due to the low thermal conductivities (TCs) of their epitaxial layers and substrates. In the current work, we significantly improved the heat-dissipation characteristics of an InGaN/GaN quantum-well (QW) green LED by using hexagonal boron nitride (hBN) as a heat-transfer medium. Multiple-layer hBN with an average thickness of 11 nm was attached to the back of an InGaN/GaN-QW LED (hBN-LED). As a reference, an LED without the hBN (Ref-LED) was also prepared. After injecting current, heat-transfer characteristics inside each LED were analyzed by measuring temperature distribution throughout the LED as a function of time. For both LED chips, the maximum temperature was measured on the edge n-type electrode brightly shining fabricated on an n-type GaN cladding layer and the minimum temperature was measured at the relatively dark-contrast top surface between the p-type electrodes. The hBN-LED took 6 s to reach its maximum temperature (136.1 °C), whereas the Ref-LED took considerably longer, specifically 11 s. After being switched off, the hBN-LED took 35 s to cool down to 37.5 °C and the Ref-LED took much longer, specifically 265 s. These results confirmed the considerable contribution of the attached hBN to the transfer and dissipation of heat in the LED. The spatial heat-transfer and distribution characteristics along the vertical direction of each LED were theoretically analyzed by carrying out simulations based on the TCs, thicknesses, and thermal resistances of the materials used in the chips. The results of these simulations agreed well with the experimental results.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
pluto应助Nara2021采纳,获得10
1秒前
科研通AI5应助支雨泽采纳,获得10
1秒前
nadia完成签到,获得积分10
1秒前
2秒前
Akim应助win采纳,获得10
3秒前
熊一只完成签到,获得积分10
3秒前
3秒前
蕾蕾完成签到,获得积分20
4秒前
YZ发布了新的文献求助10
4秒前
4秒前
华仔应助北风采纳,获得10
5秒前
aabbcc完成签到 ,获得积分10
5秒前
请记住这个女人叫小美完成签到 ,获得积分20
6秒前
梦蝴蝶完成签到,获得积分10
6秒前
6秒前
7秒前
cdercder应助无辜澜采纳,获得10
7秒前
顾矜应助机智的璐璐采纳,获得10
7秒前
蕾蕾发布了新的文献求助10
8秒前
qqq完成签到 ,获得积分10
8秒前
李健应助中森明菜采纳,获得10
9秒前
科研小菜鸡完成签到,获得积分10
10秒前
10秒前
xiaoyuanyuan发布了新的文献求助10
11秒前
11秒前
阿虎发布了新的文献求助10
12秒前
小张吃不胖完成签到 ,获得积分10
12秒前
在水一方应助付理想采纳,获得10
12秒前
13秒前
v1008完成签到,获得积分10
13秒前
13秒前
qqq关注了科研通微信公众号
14秒前
orixero应助hihi采纳,获得10
14秒前
斯文败类应助科研通管家采纳,获得10
14秒前
14秒前
子车茗应助科研通管家采纳,获得10
14秒前
子车茗应助科研通管家采纳,获得10
14秒前
子车茗应助科研通管家采纳,获得40
14秒前
传奇3应助科研通管家采纳,获得10
14秒前
14秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 666
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3734777
求助须知:如何正确求助?哪些是违规求助? 3278715
关于积分的说明 10010876
捐赠科研通 2995383
什么是DOI,文献DOI怎么找? 1643405
邀请新用户注册赠送积分活动 781153
科研通“疑难数据库(出版商)”最低求助积分说明 749285