An asset-management oriented methodology for mine haul-fleet usage scheduling

调度(生产过程) 资产管理 计算机科学 运筹学 工程类
作者
C. Nakousi,Rodrigo Pascual,Angelina Anani,Fredy Kristjanpoller,P. Lillo
出处
期刊:Reliability Engineering & System Safety [Elsevier]
被引量:7
标识
DOI:10.1016/j.ress.2018.07.034
摘要

Abstract Different complexities force mining companies to find efficient ways to respond to demand challenges and ensure long-term sustainability. It explains, in part, the increase in the use of prescriptive analytics to optimize physical-asset life-cycle costs and decrease greenhouse gas (GHG) emissions. Mining, being an asset-intensive industry, provides huge improvement opportunities. This is especially true for scheduling practices of mine haulage fleet usage in long term planning. Fleet aging implies important cost increases in maintenance and repair (M&R), and overhauls. Fleets are often heterogeneous in term of truck performance, fuel consumption and GHG emissions. Sub-optimal scheduling decisions may induce severe cost over-runs and increased emissions. This paper proposes an original mixed integer programming formulation to optimize mine haulage equipment scheduling in the long term. The model considers the effects of equipment aging, fuel consumption, payload capacity and cycle times. Our formulation handles different aspects that according to author’s knowledge have not been considered in the literature as a whole: (i) joint minimization of fuel, M&R, and overhaul costs, (ii) reduction of GHG emissions, (iii) heterogeneous equipment performance metrics, (iv) increase in cycle times due to mine aging. The case study shows a cost reduction of 13% in the discounted flows associated with fuel, M&R, and overhauls in a time horizon of 10 years. This figure translates into an NPV gain of 13.1 million USD. Additionally, GHG emissions are reduced by an average of 3470 t/year or 11% overall.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
qqqqqq发布了新的文献求助10
刚刚
忘羡222发布了新的文献求助30
刚刚
紫菜发布了新的文献求助10
2秒前
6秒前
6秒前
独特亦旋完成签到,获得积分20
7秒前
今后应助qqqqqq采纳,获得10
8秒前
小马甲应助飞羽采纳,获得10
8秒前
星辰大海应助西内!卡Q因采纳,获得10
9秒前
9秒前
彬彬发布了新的文献求助10
10秒前
太叔捕完成签到,获得积分10
10秒前
高磊发布了新的文献求助10
11秒前
RH完成签到,获得积分10
11秒前
zhangzhen完成签到,获得积分10
11秒前
12秒前
科研通AI2S应助zfzf0422采纳,获得10
14秒前
Wendy1204发布了新的文献求助10
15秒前
15秒前
lydy1993完成签到,获得积分10
16秒前
17秒前
滴滴哒哒完成签到 ,获得积分10
17秒前
SciGPT应助波波玛奇朵采纳,获得10
19秒前
戏言121完成签到,获得积分10
19秒前
迷人的映雁完成签到,获得积分10
20秒前
20秒前
美丽的之双完成签到,获得积分10
21秒前
阿会完成签到,获得积分10
21秒前
wqm完成签到,获得积分10
22秒前
戏言121发布了新的文献求助10
23秒前
23秒前
24秒前
优雅的流沙完成签到 ,获得积分10
25秒前
猫的海完成签到,获得积分10
25秒前
25秒前
Eason Liu完成签到,获得积分0
26秒前
Wendy1204完成签到,获得积分20
26秒前
Hello应助654采纳,获得10
26秒前
咩咩羊完成签到,获得积分10
26秒前
30秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824