A Framework for the Capture and Analysis of Product Usage Data for Continuous Product Improvement

计算机科学 背景(考古学) 产品生命周期 产品设计说明书 产品(数学) 新产品开发 产品设计 产品工程 系统工程 工程类 几何学 数学 生物 业务 古生物学 营销
作者
Henning Voet,Max Altenhof,Max Ellerich,Robert Schmitt,Barbara Linke
出处
期刊:Journal of Manufacturing Science and Engineering-transactions of The Asme [ASME International]
卷期号:141 (2) 被引量:24
标识
DOI:10.1115/1.4041948
摘要

Product improvement, usually through changes in design and functionality, is relying more and more on the continuous analysis of large amounts of data. Product data can come from many sources with varying effort in obtaining the data, e.g., condition monitoring and maintenance data. Intelligent products, also known as “product embedded information devices” (PEID), are already equipped with sensors and onboard computing capabilities and therefore able to generate valuable data such as the number of user interactions during the use phase. The internet of things (IoT) makes data transfer possible at any time to close the loop for the product lifecycle data and methods like machine learning promote new uses of those data. This paper proposes a methodology to capture the most relevant data on product use and human–product interaction automatically and utilize it as part of data-driven product improvement. Product engineers and designers will gain insights into the use phase and can derive design changes and quality improvements. The methodology guides the user through research on product use dimensions based on the principles of user-centered design (UCD). The findings are applied to define what usage elements, such as specific actions and context, need to be available from the use phase. During systems development, machine learning is suggested to fuse sensor data to efficiently capture the usage elements. After product deployment, use data are retrieved and analyzed to identify the improvement potential. This research is a first step on the long way to self-optimizing products.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
moneymonoo完成签到,获得积分10
4秒前
nolimithyer发布了新的文献求助10
4秒前
优秀若剑完成签到,获得积分10
6秒前
6秒前
7秒前
寒冷诗霜给2534165的求助进行了留言
9秒前
完美世界应助oyfff采纳,获得10
9秒前
iceice完成签到,获得积分10
9秒前
11秒前
xly完成签到,获得积分10
12秒前
彭于晏应助nolimithyer采纳,获得10
12秒前
12秒前
tamaco完成签到,获得积分20
13秒前
传奇3应助Andy采纳,获得10
14秒前
牛头人完成签到,获得积分10
15秒前
隐形曼青应助veraonly采纳,获得10
15秒前
15秒前
从心从心发布了新的文献求助20
16秒前
简单完成签到,获得积分10
16秒前
16秒前
cc完成签到,获得积分10
16秒前
纪富完成签到 ,获得积分10
17秒前
敬老院N号应助ydydydy采纳,获得10
18秒前
昏睡的鑫磊完成签到,获得积分10
20秒前
000发布了新的文献求助10
20秒前
GuSiwen完成签到,获得积分10
20秒前
20秒前
NexusExplorer应助不安的裘采纳,获得10
21秒前
21秒前
大大怪发布了新的文献求助10
22秒前
saveMA完成签到,获得积分10
23秒前
23秒前
昨夜書完成签到 ,获得积分10
23秒前
23秒前
天天快乐应助清萍红檀采纳,获得10
24秒前
何一翰完成签到,获得积分10
25秒前
Sherlock完成签到,获得积分10
26秒前
SDY完成签到 ,获得积分10
27秒前
jacklove发布了新的文献求助10
27秒前
29秒前
高分求助中
Evolution 3rd edition 1500
保险藏宝图 1000
Lire en communiste 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
Mathematics and Finite Element Discretizations of Incompressible Navier—Stokes Flows 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3184721
求助须知:如何正确求助?哪些是违规求助? 2835020
关于积分的说明 8002635
捐赠科研通 2497407
什么是DOI,文献DOI怎么找? 1332826
科研通“疑难数据库(出版商)”最低求助积分说明 636696
邀请新用户注册赠送积分活动 604068