已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A Framework for the Capture and Analysis of Product Usage Data for Continuous Product Improvement

计算机科学 背景(考古学) 产品生命周期 产品设计说明书 产品(数学) 新产品开发 产品设计 产品工程 系统工程 工程类 几何学 数学 生物 业务 古生物学 营销
作者
Henning Voet,Max Altenhof,Max Ellerich,Robert Schmitt,Barbara Linke
出处
期刊:Journal of Manufacturing Science and Engineering-transactions of The Asme [ASME International]
卷期号:141 (2) 被引量:24
标识
DOI:10.1115/1.4041948
摘要

Product improvement, usually through changes in design and functionality, is relying more and more on the continuous analysis of large amounts of data. Product data can come from many sources with varying effort in obtaining the data, e.g., condition monitoring and maintenance data. Intelligent products, also known as “product embedded information devices” (PEID), are already equipped with sensors and onboard computing capabilities and therefore able to generate valuable data such as the number of user interactions during the use phase. The internet of things (IoT) makes data transfer possible at any time to close the loop for the product lifecycle data and methods like machine learning promote new uses of those data. This paper proposes a methodology to capture the most relevant data on product use and human–product interaction automatically and utilize it as part of data-driven product improvement. Product engineers and designers will gain insights into the use phase and can derive design changes and quality improvements. The methodology guides the user through research on product use dimensions based on the principles of user-centered design (UCD). The findings are applied to define what usage elements, such as specific actions and context, need to be available from the use phase. During systems development, machine learning is suggested to fuse sensor data to efficiently capture the usage elements. After product deployment, use data are retrieved and analyzed to identify the improvement potential. This research is a first step on the long way to self-optimizing products.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
檀123完成签到 ,获得积分10
1秒前
南笺完成签到 ,获得积分10
3秒前
5秒前
Akim应助123采纳,获得10
6秒前
10秒前
12秒前
12秒前
13秒前
13秒前
星辰大海应助张子扬采纳,获得10
13秒前
liu完成签到,获得积分20
14秒前
14秒前
猪哥发布了新的文献求助10
15秒前
xx1234567890发布了新的文献求助30
15秒前
liu发布了新的文献求助10
18秒前
啊建发布了新的文献求助10
19秒前
lz发布了新的文献求助10
20秒前
飘逸踏歌完成签到,获得积分10
23秒前
啊建完成签到,获得积分10
24秒前
w1x2123完成签到,获得积分10
24秒前
24秒前
欧皇发布了新的文献求助30
25秒前
lz完成签到,获得积分10
29秒前
123发布了新的文献求助10
29秒前
33秒前
lvlei发布了新的文献求助10
37秒前
38秒前
42秒前
开心的听双完成签到,获得积分10
42秒前
binxman完成签到,获得积分10
44秒前
46秒前
50秒前
Lan完成签到 ,获得积分10
50秒前
万能图书馆应助xuning采纳,获得10
51秒前
雨肖完成签到,获得积分10
52秒前
欧皇完成签到,获得积分20
52秒前
redstone发布了新的文献求助20
55秒前
思源应助打工人采纳,获得10
57秒前
叶mt完成签到 ,获得积分10
58秒前
1分钟前
高分求助中
Spray / Wall-interaction Modelling by Dimensionless Data Analysis 2000
Mixed-anion Compounds 600
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Earth System Geophysics 500
Aspects of Babylonian celestial divination: the lunar eclipse tablets of Enūma Anu Enlil 500
Geochemistry, 2nd Edition 地球化学经典教科书第二版 401
2024 Medicinal Chemistry Reviews 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3200608
求助须知:如何正确求助?哪些是违规求助? 2850426
关于积分的说明 8071977
捐赠科研通 2514157
什么是DOI,文献DOI怎么找? 1346908
科研通“疑难数据库(出版商)”最低求助积分说明 640281
邀请新用户注册赠送积分活动 610407