A Framework for the Capture and Analysis of Product Usage Data for Continuous Product Improvement

计算机科学 背景(考古学) 产品生命周期 产品设计说明书 产品(数学) 新产品开发 产品设计 产品工程 系统工程 工程类 几何学 数学 生物 业务 古生物学 营销
作者
Henning Voet,Max Altenhof,Max Ellerich,Robert Schmitt,Barbara Linke
出处
期刊:Journal of Manufacturing Science and Engineering-transactions of The Asme [ASME International]
卷期号:141 (2) 被引量:24
标识
DOI:10.1115/1.4041948
摘要

Product improvement, usually through changes in design and functionality, is relying more and more on the continuous analysis of large amounts of data. Product data can come from many sources with varying effort in obtaining the data, e.g., condition monitoring and maintenance data. Intelligent products, also known as “product embedded information devices” (PEID), are already equipped with sensors and onboard computing capabilities and therefore able to generate valuable data such as the number of user interactions during the use phase. The internet of things (IoT) makes data transfer possible at any time to close the loop for the product lifecycle data and methods like machine learning promote new uses of those data. This paper proposes a methodology to capture the most relevant data on product use and human–product interaction automatically and utilize it as part of data-driven product improvement. Product engineers and designers will gain insights into the use phase and can derive design changes and quality improvements. The methodology guides the user through research on product use dimensions based on the principles of user-centered design (UCD). The findings are applied to define what usage elements, such as specific actions and context, need to be available from the use phase. During systems development, machine learning is suggested to fuse sensor data to efficiently capture the usage elements. After product deployment, use data are retrieved and analyzed to identify the improvement potential. This research is a first step on the long way to self-optimizing products.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
酷炫的不悔完成签到,获得积分10
2秒前
弗一昂发布了新的文献求助10
2秒前
丘比特应助傅三毒采纳,获得10
3秒前
Yan完成签到,获得积分10
4秒前
Ava应助鹰击长空采纳,获得10
4秒前
孤独的大灰狼完成签到 ,获得积分10
4秒前
cannon8应助高贵的夜南采纳,获得20
4秒前
CipherSage应助Riverside采纳,获得10
5秒前
孝顺的青枫完成签到,获得积分10
6秒前
科研通AI2S应助TsutsumiRyuu采纳,获得10
8秒前
妖怪大大应助kaixin采纳,获得10
9秒前
9秒前
英姑应助佩奇采纳,获得10
11秒前
11秒前
ironsilica发布了新的文献求助10
12秒前
研友_祝鬼神完成签到,获得积分10
12秒前
摆不烂完成签到,获得积分10
12秒前
Cody发布了新的文献求助10
13秒前
Orange应助飞天817采纳,获得10
14秒前
尊敬又晴完成签到,获得积分10
14秒前
Gilana发布了新的文献求助10
15秒前
ktk完成签到,获得积分10
17秒前
xiao完成签到,获得积分10
17秒前
NexusExplorer应助5165asd采纳,获得10
19秒前
顺心的芹菜完成签到,获得积分10
20秒前
哥哥喜欢格格完成签到 ,获得积分10
20秒前
冷静的肖恩完成签到 ,获得积分10
20秒前
不配.应助光亮平蝶采纳,获得10
21秒前
完美世界应助Gilana采纳,获得10
21秒前
科研通AI2S应助姗姗xl采纳,获得10
21秒前
传奇3应助橘生淮南.采纳,获得10
22秒前
天天快乐应助如沐风采纳,获得10
23秒前
25秒前
26秒前
26秒前
充电宝应助xiaoyu采纳,获得10
27秒前
思源应助36456657采纳,获得10
28秒前
汉堡包应助鲤鱼紫菱采纳,获得10
30秒前
zbw发布了新的文献求助10
30秒前
ChouChou完成签到,获得积分20
30秒前
高分求助中
Evolution 3rd edition 1500
Lire en communiste 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
2-Acetyl-1-pyrroline: an important aroma component of cooked rice 500
Ribozymes and aptamers in the RNA world, and in synthetic biology 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3180952
求助须知:如何正确求助?哪些是违规求助? 2831093
关于积分的说明 7983278
捐赠科研通 2493095
什么是DOI,文献DOI怎么找? 1329977
科研通“疑难数据库(出版商)”最低求助积分说明 635872
版权声明 602954