A Framework for the Capture and Analysis of Product Usage Data for Continuous Product Improvement

计算机科学 背景(考古学) 产品生命周期 产品设计说明书 产品(数学) 新产品开发 产品设计 产品工程 系统工程 工程类 几何学 数学 生物 业务 古生物学 营销
作者
Henning Voet,Max Altenhof,Max Ellerich,Robert Schmitt,Barbara Linke
出处
期刊:Journal of Manufacturing Science and Engineering-transactions of The Asme [ASME International]
卷期号:141 (2) 被引量:24
标识
DOI:10.1115/1.4041948
摘要

Product improvement, usually through changes in design and functionality, is relying more and more on the continuous analysis of large amounts of data. Product data can come from many sources with varying effort in obtaining the data, e.g., condition monitoring and maintenance data. Intelligent products, also known as “product embedded information devices” (PEID), are already equipped with sensors and onboard computing capabilities and therefore able to generate valuable data such as the number of user interactions during the use phase. The internet of things (IoT) makes data transfer possible at any time to close the loop for the product lifecycle data and methods like machine learning promote new uses of those data. This paper proposes a methodology to capture the most relevant data on product use and human–product interaction automatically and utilize it as part of data-driven product improvement. Product engineers and designers will gain insights into the use phase and can derive design changes and quality improvements. The methodology guides the user through research on product use dimensions based on the principles of user-centered design (UCD). The findings are applied to define what usage elements, such as specific actions and context, need to be available from the use phase. During systems development, machine learning is suggested to fuse sensor data to efficiently capture the usage elements. After product deployment, use data are retrieved and analyzed to identify the improvement potential. This research is a first step on the long way to self-optimizing products.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
光亮秋白完成签到,获得积分10
2秒前
3秒前
3秒前
cookie完成签到,获得积分10
3秒前
十有八九发布了新的文献求助30
4秒前
Wang完成签到 ,获得积分10
5秒前
5秒前
ccccccwq完成签到,获得积分10
8秒前
9秒前
小马甲应助LUMEN采纳,获得10
9秒前
tqq发布了新的文献求助10
9秒前
10秒前
10秒前
asd应助高大凌寒采纳,获得200
10秒前
11秒前
margine发布了新的文献求助30
13秒前
15秒前
16秒前
姜至完成签到,获得积分10
16秒前
喜悦的向日葵完成签到,获得积分10
17秒前
小猫不再冷酷完成签到,获得积分20
17秒前
棉花糖完成签到 ,获得积分10
18秒前
宇智波白哉完成签到 ,获得积分10
22秒前
星辰完成签到,获得积分10
22秒前
wjx完成签到 ,获得积分10
23秒前
23秒前
李燕君发布了新的文献求助10
25秒前
大喜发布了新的文献求助30
27秒前
28秒前
朱权圣完成签到,获得积分10
28秒前
28秒前
共享精神应助wenying采纳,获得10
30秒前
31秒前
33秒前
在水一方应助羊了个羊采纳,获得10
33秒前
Niki_Chen完成签到,获得积分10
37秒前
margine完成签到,获得积分10
37秒前
tqq完成签到,获得积分10
37秒前
Akim应助Why采纳,获得10
38秒前
高分求助中
Spray / Wall-interaction Modelling by Dimensionless Data Analysis 2000
ALA生合成不全マウスでの糖代謝異常の分子機構解析 520
安全防范技术与工程 500
Mathematics and Finite Element Discretizations of Incompressible Navier—Stokes Flows 500
2-Acetyl-1-pyrroline: an important aroma component of cooked rice 500
A real-time energy management strategy based on fuzzy control and ECMS for PHEVs 400
2024 Medicinal Chemistry Reviews 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3190816
求助须知:如何正确求助?哪些是违规求助? 2840046
关于积分的说明 8026739
捐赠科研通 2503188
什么是DOI,文献DOI怎么找? 1336817
科研通“疑难数据库(出版商)”最低求助积分说明 637963
邀请新用户注册赠送积分活动 606279