A Framework for the Capture and Analysis of Product Usage Data for Continuous Product Improvement

计算机科学 背景(考古学) 产品生命周期 产品设计说明书 产品(数学) 新产品开发 产品设计 产品工程 系统工程 工程类 几何学 数学 生物 业务 古生物学 营销
作者
Henning Voet,Max Altenhof,Max Ellerich,Robert Schmitt,Barbara Linke
出处
期刊:Journal of Manufacturing Science and Engineering-transactions of The Asme [ASME International]
卷期号:141 (2) 被引量:24
标识
DOI:10.1115/1.4041948
摘要

Product improvement, usually through changes in design and functionality, is relying more and more on the continuous analysis of large amounts of data. Product data can come from many sources with varying effort in obtaining the data, e.g., condition monitoring and maintenance data. Intelligent products, also known as “product embedded information devices” (PEID), are already equipped with sensors and onboard computing capabilities and therefore able to generate valuable data such as the number of user interactions during the use phase. The internet of things (IoT) makes data transfer possible at any time to close the loop for the product lifecycle data and methods like machine learning promote new uses of those data. This paper proposes a methodology to capture the most relevant data on product use and human–product interaction automatically and utilize it as part of data-driven product improvement. Product engineers and designers will gain insights into the use phase and can derive design changes and quality improvements. The methodology guides the user through research on product use dimensions based on the principles of user-centered design (UCD). The findings are applied to define what usage elements, such as specific actions and context, need to be available from the use phase. During systems development, machine learning is suggested to fuse sensor data to efficiently capture the usage elements. After product deployment, use data are retrieved and analyzed to identify the improvement potential. This research is a first step on the long way to self-optimizing products.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
万能图书馆应助www采纳,获得10
刚刚
刚刚
1秒前
蒙豆儿发布了新的文献求助10
1秒前
Alicia发布了新的文献求助50
2秒前
希望天下0贩的0应助lccccc采纳,获得10
3秒前
符雁完成签到,获得积分10
3秒前
3秒前
叨叨不叨叨叨叨叨完成签到,获得积分10
5秒前
6秒前
上官若男应助科研通管家采纳,获得10
6秒前
田様应助科研通管家采纳,获得10
6秒前
小二郎应助科研通管家采纳,获得10
6秒前
汉堡包应助科研通管家采纳,获得10
6秒前
ding应助科研通管家采纳,获得10
6秒前
6秒前
杳鸢应助科研通管家采纳,获得30
6秒前
领导范儿应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
HY应助han采纳,获得20
7秒前
LL发布了新的文献求助10
7秒前
冷静剑成发布了新的文献求助10
7秒前
7秒前
歼击机88完成签到,获得积分20
8秒前
爆米花应助符雁采纳,获得10
8秒前
8秒前
Camellia发布了新的文献求助10
8秒前
桐桐应助细心的小鸽子采纳,获得10
8秒前
9秒前
prof.zhang完成签到,获得积分10
9秒前
11秒前
馨橣完成签到,获得积分10
12秒前
星辰大海应助吴德敏采纳,获得10
13秒前
LL完成签到,获得积分20
13秒前
geather完成签到,获得积分10
13秒前
13秒前
SciGPT应助HUAN采纳,获得10
13秒前
飞儿随缘发布了新的文献求助10
15秒前
HCLonely应助岸在海的深处采纳,获得30
15秒前
高分求助中
Spray / Wall-interaction Modelling by Dimensionless Data Analysis 2000
Aspects of Babylonian celestial divination: the lunar eclipse tablets of Enūma Anu Enlil 500
Mathematics and Finite Element Discretizations of Incompressible Navier—Stokes Flows 500
India's foreign trade policy and its performance in the world economy 450
Structural Inorganic Chemistry 400
Dictionary of socialism 350
Mixed-anion Compounds 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3196181
求助须知:如何正确求助?哪些是违规求助? 2845029
关于积分的说明 8052573
捐赠科研通 2509531
什么是DOI,文献DOI怎么找? 1341824
科研通“疑难数据库(出版商)”最低求助积分说明 639282
邀请新用户注册赠送积分活动 608502