A Framework for the Capture and Analysis of Product Usage Data for Continuous Product Improvement

计算机科学 背景(考古学) 产品生命周期 产品设计说明书 产品(数学) 新产品开发 产品设计 产品工程 系统工程 工程类 几何学 数学 生物 业务 古生物学 营销
作者
Henning Voet,Max Altenhof,Max Ellerich,Robert Schmitt,Barbara Linke
出处
期刊:Journal of Manufacturing Science and Engineering-transactions of The Asme [ASME International]
卷期号:141 (2) 被引量:24
标识
DOI:10.1115/1.4041948
摘要

Product improvement, usually through changes in design and functionality, is relying more and more on the continuous analysis of large amounts of data. Product data can come from many sources with varying effort in obtaining the data, e.g., condition monitoring and maintenance data. Intelligent products, also known as “product embedded information devices” (PEID), are already equipped with sensors and onboard computing capabilities and therefore able to generate valuable data such as the number of user interactions during the use phase. The internet of things (IoT) makes data transfer possible at any time to close the loop for the product lifecycle data and methods like machine learning promote new uses of those data. This paper proposes a methodology to capture the most relevant data on product use and human–product interaction automatically and utilize it as part of data-driven product improvement. Product engineers and designers will gain insights into the use phase and can derive design changes and quality improvements. The methodology guides the user through research on product use dimensions based on the principles of user-centered design (UCD). The findings are applied to define what usage elements, such as specific actions and context, need to be available from the use phase. During systems development, machine learning is suggested to fuse sensor data to efficiently capture the usage elements. After product deployment, use data are retrieved and analyzed to identify the improvement potential. This research is a first step on the long way to self-optimizing products.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
科目三应助席傲柏采纳,获得10
刚刚
1秒前
小二郎应助过pass采纳,获得10
1秒前
1秒前
user001发布了新的文献求助10
2秒前
彩色的老五完成签到,获得积分10
2秒前
mao发布了新的文献求助10
2秒前
2秒前
yy发布了新的文献求助10
4秒前
兔兔完成签到 ,获得积分10
4秒前
勒布朗爱科研完成签到,获得积分10
5秒前
5秒前
勤恳的秋寒完成签到,获得积分10
6秒前
缥缈的芷卉完成签到,获得积分10
7秒前
7秒前
8秒前
RUI完成签到,获得积分10
8秒前
轻松的小白菜完成签到,获得积分10
8秒前
9秒前
金刚经应助称心的乘云采纳,获得10
10秒前
明亮无颜发布了新的文献求助10
10秒前
11秒前
Jasper应助单薄广山采纳,获得10
11秒前
SYX完成签到 ,获得积分10
11秒前
12秒前
可乐完成签到 ,获得积分10
13秒前
mao发布了新的文献求助10
13秒前
13秒前
xuxieyu发布了新的文献求助10
13秒前
14秒前
派大星发布了新的文献求助20
15秒前
16秒前
18秒前
林森完成签到,获得积分10
19秒前
自信鑫鹏发布了新的文献求助10
19秒前
20秒前
orixero应助北方采纳,获得10
21秒前
四月是你的谎言完成签到 ,获得积分10
21秒前
小鞋发布了新的文献求助150
22秒前
高分求助中
Spray / Wall-interaction Modelling by Dimensionless Data Analysis 2000
ALA生合成不全マウスでの糖代謝異常の分子機構解析 520
安全防范技术与工程 500
Mathematics and Finite Element Discretizations of Incompressible Navier—Stokes Flows 500
2-Acetyl-1-pyrroline: an important aroma component of cooked rice 500
A real-time energy management strategy based on fuzzy control and ECMS for PHEVs 400
2024 Medicinal Chemistry Reviews 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3191006
求助须知:如何正确求助?哪些是违规求助? 2840262
关于积分的说明 8027729
捐赠科研通 2503618
什么是DOI,文献DOI怎么找? 1336979
科研通“疑难数据库(出版商)”最低求助积分说明 638000
邀请新用户注册赠送积分活动 606406