A Framework for the Capture and Analysis of Product Usage Data for Continuous Product Improvement

计算机科学 背景(考古学) 产品生命周期 产品设计说明书 产品(数学) 新产品开发 产品设计 产品工程 系统工程 工程类 几何学 数学 生物 业务 古生物学 营销
作者
Henning Voet,Max Altenhof,Max Ellerich,Robert Schmitt,Barbara Linke
出处
期刊:Journal of Manufacturing Science and Engineering-transactions of The Asme [ASME International]
卷期号:141 (2) 被引量:24
标识
DOI:10.1115/1.4041948
摘要

Product improvement, usually through changes in design and functionality, is relying more and more on the continuous analysis of large amounts of data. Product data can come from many sources with varying effort in obtaining the data, e.g., condition monitoring and maintenance data. Intelligent products, also known as “product embedded information devices” (PEID), are already equipped with sensors and onboard computing capabilities and therefore able to generate valuable data such as the number of user interactions during the use phase. The internet of things (IoT) makes data transfer possible at any time to close the loop for the product lifecycle data and methods like machine learning promote new uses of those data. This paper proposes a methodology to capture the most relevant data on product use and human–product interaction automatically and utilize it as part of data-driven product improvement. Product engineers and designers will gain insights into the use phase and can derive design changes and quality improvements. The methodology guides the user through research on product use dimensions based on the principles of user-centered design (UCD). The findings are applied to define what usage elements, such as specific actions and context, need to be available from the use phase. During systems development, machine learning is suggested to fuse sensor data to efficiently capture the usage elements. After product deployment, use data are retrieved and analyzed to identify the improvement potential. This research is a first step on the long way to self-optimizing products.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
慢鸟先飞发布了新的文献求助10
1秒前
1秒前
1秒前
向上先生完成签到,获得积分10
2秒前
程南完成签到,获得积分10
5秒前
6秒前
坚定伊发布了新的文献求助10
6秒前
6秒前
从容的天空给从容的天空的求助进行了留言
7秒前
7秒前
tursun应助Bgeelyu采纳,获得30
7秒前
7秒前
yeyeye发布了新的文献求助10
8秒前
8秒前
小蘑菇应助文艺寄灵采纳,获得10
9秒前
五十不同完成签到 ,获得积分10
9秒前
姬昌发布了新的文献求助30
9秒前
10秒前
YJY完成签到 ,获得积分10
11秒前
13秒前
顷梦完成签到,获得积分10
13秒前
NexusExplorer应助司空博涛采纳,获得30
14秒前
2113发布了新的文献求助10
14秒前
Lucas应助有机合成采纳,获得10
14秒前
14秒前
15秒前
JM完成签到,获得积分10
16秒前
Nniu完成签到 ,获得积分10
17秒前
朱文韬发布了新的文献求助10
17秒前
CipherSage应助oldfe采纳,获得10
17秒前
17秒前
HH完成签到,获得积分10
18秒前
Jasper应助特来骑采纳,获得10
18秒前
壮观以松发布了新的文献求助10
18秒前
科研小陈完成签到,获得积分10
20秒前
独孤鹰发布了新的文献求助100
20秒前
LOVEME发布了新的文献求助10
20秒前
22秒前
我是老大应助哈哈采纳,获得10
22秒前
23秒前
高分求助中
Evolution 3rd edition 1500
保险藏宝图 1000
Lire en communiste 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
Mathematics and Finite Element Discretizations of Incompressible Navier—Stokes Flows 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3184406
求助须知:如何正确求助?哪些是违规求助? 2834716
关于积分的说明 8000982
捐赠科研通 2497107
什么是DOI,文献DOI怎么找? 1332655
科研通“疑难数据库(出版商)”最低求助积分说明 636631
邀请新用户注册赠送积分活动 603979