A Framework for the Capture and Analysis of Product Usage Data for Continuous Product Improvement

计算机科学 背景(考古学) 产品生命周期 产品设计说明书 产品(数学) 新产品开发 产品设计 产品工程 系统工程 工程类 几何学 数学 生物 业务 古生物学 营销
作者
Henning Voet,Max Altenhof,Max Ellerich,Robert Schmitt,Barbara Linke
出处
期刊:Journal of Manufacturing Science and Engineering-transactions of The Asme [ASME International]
卷期号:141 (2) 被引量:24
标识
DOI:10.1115/1.4041948
摘要

Product improvement, usually through changes in design and functionality, is relying more and more on the continuous analysis of large amounts of data. Product data can come from many sources with varying effort in obtaining the data, e.g., condition monitoring and maintenance data. Intelligent products, also known as “product embedded information devices” (PEID), are already equipped with sensors and onboard computing capabilities and therefore able to generate valuable data such as the number of user interactions during the use phase. The internet of things (IoT) makes data transfer possible at any time to close the loop for the product lifecycle data and methods like machine learning promote new uses of those data. This paper proposes a methodology to capture the most relevant data on product use and human–product interaction automatically and utilize it as part of data-driven product improvement. Product engineers and designers will gain insights into the use phase and can derive design changes and quality improvements. The methodology guides the user through research on product use dimensions based on the principles of user-centered design (UCD). The findings are applied to define what usage elements, such as specific actions and context, need to be available from the use phase. During systems development, machine learning is suggested to fuse sensor data to efficiently capture the usage elements. After product deployment, use data are retrieved and analyzed to identify the improvement potential. This research is a first step on the long way to self-optimizing products.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
碧空完成签到,获得积分10
2秒前
廖同学完成签到,获得积分10
2秒前
微笑的冰枫完成签到,获得积分10
2秒前
樊书雪发布了新的文献求助10
3秒前
3秒前
6秒前
qp关闭了qp文献求助
7秒前
9秒前
10秒前
10秒前
zz完成签到,获得积分10
11秒前
12秒前
聪明的行云完成签到 ,获得积分10
13秒前
orchidaceae完成签到,获得积分10
15秒前
周勋发布了新的文献求助20
16秒前
专注的胡萝卜完成签到 ,获得积分10
16秒前
17秒前
17秒前
时尚的凡白完成签到,获得积分20
17秒前
吃吃完成签到,获得积分20
17秒前
善学以致用应助萌新采纳,获得10
17秒前
mynuongga发布了新的文献求助10
18秒前
18秒前
19秒前
杳鸢应助ydydydy采纳,获得10
19秒前
JamesPei应助时尚的凡白采纳,获得10
20秒前
21秒前
Billy应助是滴是滴采纳,获得10
21秒前
平陵发布了新的文献求助10
22秒前
22秒前
22秒前
feiCheung发布了新的文献求助10
22秒前
端庄的荧完成签到,获得积分10
24秒前
颜超完成签到,获得积分10
25秒前
25秒前
25秒前
愉快的馒头完成签到,获得积分10
25秒前
大模型应助lee采纳,获得10
26秒前
高分求助中
Spray / Wall-interaction Modelling by Dimensionless Data Analysis 2000
Evolution 3rd edition 1500
保险藏宝图 1000
Lire en communiste 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
Mathematics and Finite Element Discretizations of Incompressible Navier—Stokes Flows 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3184784
求助须知:如何正确求助?哪些是违规求助? 2835088
关于积分的说明 8003098
捐赠科研通 2497527
什么是DOI,文献DOI怎么找? 1332848
科研通“疑难数据库(出版商)”最低求助积分说明 636738
邀请新用户注册赠送积分活动 604098