A Framework for the Capture and Analysis of Product Usage Data for Continuous Product Improvement

计算机科学 背景(考古学) 产品生命周期 产品设计说明书 产品(数学) 新产品开发 产品设计 产品工程 系统工程 工程类 几何学 数学 生物 业务 古生物学 营销
作者
Henning Voet,Max Altenhof,Max Ellerich,Robert Schmitt,Barbara Linke
出处
期刊:Journal of Manufacturing Science and Engineering-transactions of The Asme [ASME International]
卷期号:141 (2) 被引量:24
标识
DOI:10.1115/1.4041948
摘要

Product improvement, usually through changes in design and functionality, is relying more and more on the continuous analysis of large amounts of data. Product data can come from many sources with varying effort in obtaining the data, e.g., condition monitoring and maintenance data. Intelligent products, also known as “product embedded information devices” (PEID), are already equipped with sensors and onboard computing capabilities and therefore able to generate valuable data such as the number of user interactions during the use phase. The internet of things (IoT) makes data transfer possible at any time to close the loop for the product lifecycle data and methods like machine learning promote new uses of those data. This paper proposes a methodology to capture the most relevant data on product use and human–product interaction automatically and utilize it as part of data-driven product improvement. Product engineers and designers will gain insights into the use phase and can derive design changes and quality improvements. The methodology guides the user through research on product use dimensions based on the principles of user-centered design (UCD). The findings are applied to define what usage elements, such as specific actions and context, need to be available from the use phase. During systems development, machine learning is suggested to fuse sensor data to efficiently capture the usage elements. After product deployment, use data are retrieved and analyzed to identify the improvement potential. This research is a first step on the long way to self-optimizing products.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
2秒前
4秒前
5秒前
想疯发布了新的文献求助10
6秒前
怡然天问发布了新的文献求助20
7秒前
雨相所至应助zong采纳,获得10
8秒前
在英快尔发布了新的文献求助10
8秒前
Retromer发布了新的文献求助10
10秒前
田様应助王俊采纳,获得10
10秒前
11秒前
科研通AI2S应助lin采纳,获得10
11秒前
nanda完成签到,获得积分10
13秒前
CodeCraft应助想疯采纳,获得10
17秒前
23秒前
23秒前
Escanor举报yyyq0721求助涉嫌违规
25秒前
动次打次发布了新的文献求助20
30秒前
Retromer完成签到,获得积分10
33秒前
33秒前
朱珠贝完成签到,获得积分10
35秒前
南栀完成签到 ,获得积分10
35秒前
十月完成签到,获得积分10
35秒前
辞轲完成签到,获得积分10
38秒前
Klaust完成签到,获得积分10
42秒前
42秒前
赫赫完成签到,获得积分10
43秒前
43秒前
桐桐应助medmh采纳,获得10
45秒前
千山孤风完成签到,获得积分0
45秒前
48秒前
49秒前
贾不可完成签到,获得积分10
50秒前
生动的战斗机完成签到,获得积分10
51秒前
53秒前
54秒前
59秒前
59秒前
王俊发布了新的文献求助10
1分钟前
高分求助中
Spray / Wall-interaction Modelling by Dimensionless Data Analysis 2000
Evolution 3rd edition 1500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
ALA生合成不全マウスでの糖代謝異常の分子機構解析 520
Mathematics and Finite Element Discretizations of Incompressible Navier—Stokes Flows 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3187833
求助须知:如何正确求助?哪些是违规求助? 2837548
关于积分的说明 8015576
捐赠科研通 2500164
什么是DOI,文献DOI怎么找? 1334775
科研通“疑难数据库(出版商)”最低求助积分说明 637295
邀请新用户注册赠送积分活动 605251