人工智能
计算机科学
深度学习
机器学习
精神分裂症(面向对象编程)
一般化
人工神经网络
地图集(解剖学)
交叉验证
深层神经网络
特征(语言学)
模式识别(心理学)
医学
数学
程序设计语言
哲学
数学分析
解剖
语言学
作者
Aojun Zhou,Yue Cui,Tianzi Jiang
标识
DOI:10.1109/ccis.2018.8691336
摘要
The paper presents large-scale multisite schizophrenia classification using cutting-edge deep learning tools. In this study, we collected 1275 participants at 8 sites, including 662 schizophrenic patients. We combine the fine-grained Brainnetome Atlas to extract features. And we propose the generalized feature-invariant deep neural network framework to ensure the model generalization in automatic diagnosis schizophrenia. Our model evaluate with 10-fold cross-validation and leave-one-site validation prediction, Average accuracy brings 2.7\% gain in classification accuracy against standard leave-one-site-out validation. Besides, our model gives the promising result on all sites classification and great potentials for computer-aided diagnosis of psychiatric disorders with simple and meaningful biomarkers.
科研通智能强力驱动
Strongly Powered by AbleSci AI