非线性系统
多智能体系统
李普希茨连续性
协议(科学)
拉普拉斯矩阵
计算机科学
控制理论(社会学)
平方(代数)
共识
李雅普诺夫函数
特征向量
功能(生物学)
均方误差
数学
拉普拉斯算子
数学优化
人工智能
数学分析
控制(管理)
物理
统计
生物
几何学
进化生物学
病理
医学
替代医学
量子力学
作者
Wencheng Zou,Zhengrong Xiang,Choon Ki Ahn
标识
DOI:10.1109/tsmc.2018.2862140
摘要
This paper focuses on the mean square practical leader-following consensus of second-order nonlinear multiagent systems with noises and unmodeled dynamics, where all agents are influenced by noises emerging from the input channels. We present a new distributed protocol, which contains a designed signal to dominate the effects of unmodeled dynamics, to solve the mean square leader-following consensus problem for the nonlinear multiagent systems. The protocol is designed without using any global information, even the eigenvalues of the Laplacian matrix. The Lipschitz constant of the nonlinear function is also unknown to all followers. Using the Lyapunov functional approach and the stochastic theory, it is proven that the mean square practical leader-following consensus is achieved by the designed protocol. Finally, two examples are provided to illustrate the effectiveness of the designed algorithm.
科研通智能强力驱动
Strongly Powered by AbleSci AI