First Report of Anthracnose Causing Both Crown and Fruit Rot of Strawberry by Colletotrichum siamense in North Carolina

炭疽菌 生物 草莓 炭疽菌 园艺 植物 图书馆学 计算机科学 接种
作者
Tika B. Adhikari,Jose Guillermo Chacón,Gina E. Fernandez,Frank J. Louws
出处
期刊:Plant Disease [Scientific Societies]
卷期号:103 (7): 1775-1775 被引量:9
标识
DOI:10.1094/pdis-02-19-0314-pdn
摘要

HomePlant DiseaseVol. 103, No. 7First Report of Anthracnose Causing Both Crown and Fruit Rot of Strawberry by Colletotrichum siamense in North Carolina PreviousNext DISEASE NOTESFirst Report of Anthracnose Causing Both Crown and Fruit Rot of Strawberry by Colletotrichum siamense in North CarolinaT. B. Adhikari, J. G. Chacon, G. E. Fernandez, and F. J. LouwsT. B. Adhikari†Corresponding author: T. B. Adhikari; E-mail Address: [email protected]http://orcid.org/0000-0001-7118-6875Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27695Search for more papers by this author, J. G. ChaconDepartment of Horticultural Science, North Carolina State University, Raleigh, NC 27695Search for more papers by this author, G. E. FernandezDepartment of Horticultural Science, North Carolina State University, Raleigh, NC 27695Search for more papers by this author, and F. J. LouwsDepartment of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27695Department of Horticultural Science, North Carolina State University, Raleigh, NC 27695Search for more papers by this authorAffiliationsAuthors and Affiliations T. B. Adhikari1 † J. G. Chacon2 G. E. Fernandez2 F. J. Louws1 2 1Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27695 2Department of Horticultural Science, North Carolina State University, Raleigh, NC 27695 Published Online:10 May 2019https://doi.org/10.1094/PDIS-02-19-0314-PDNAboutSectionsSupplemental ToolsAdd to favoritesDownload CitationsTrack Citations ShareShare onFacebookTwitterLinked InRedditEmailWechat Anthracnose fruit rot and anthracnose crown rot of strawberries (Fragaria × ananassa Duch.), caused by Colletotrichum spp., have been mainly associated with the C. acutatum complex (Baroncelli et al. 2015; Damm et al. 2012) and the C. gloeosporioides complex (Weir et al. 2012), respectively. In September 2017, typical symptoms of anthracnose were observed on strawberry plants in a propagation greenhouse in North Carolina, U.S.A. Symptoms that appeared were crown rotting, wilting, and stunting. Small pieces (2 mm2) of necrotic tissue were cut with a sterile scalpel from the crown lesion. Approximately 15% of the plants showed such typical symptoms. The diseased segment was surface sterilized with 70% ethanol for 30 s and placed on acidified potato dextrose agar (APDA). Hyphal tips from colonies emerging from the edge of the tissue were transferred onto fresh APDA Petri plates and incubated at 25°C. Morphological characteristics after 7 days of incubation showed light-gray to whitish aerial mycelium. Conidia were hyaline, aseptate, fusiform with obtuse ends, cylindrical, 13.2 to 17.5 µm long, and 4.9 to 7.5 µm wide. These characteristics of conidia were matched with some species belonging to the C. gloeosporioides complex including C. siamense (Weir et al. 2012). For accurate identification, genomic DNA of isolate 28244 was extracted and amplified with partial sequences of actin (ACT), chitin synthase (CHS), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), ribosomal internal transcribed spacer (ITS), and manganese-superoxide dismutase (SOD2) primer sets (Weir et al. 2012). Sequencing of the purified polymerase chain reaction products was performed at the Genomic Sciences Laboratory, North Carolina State University, Raleigh, NC (White et al. 1990). Sequences of the amplified regions of isolate 28244 were deposited to GenBank (accession nos. MH722310 to MH722314). Additionally, sequences of 22 Colletotrichum species within the C. gloeosporioides complex (Weir et al. 2012) were retrieved from GenBank. Jukes–Cantor neighbor-joining trees inferred from the concatenated sequences (ACT, CHS, GAPDH, ITS, and SOD2) placed isolate 28244 from North Carolina within the same cluster of C. siamense including isolate BRSP09 from Bangladesh (Gupta et al. 2018). These sequences were compared with the GenBank database using BLASTn and revealed a high percentage of similarity (>99%). To confirm pathogenicity of the fungus, Koch’s postulates were performed by three methods. Three-month-old strawberry plants of cultivar ‘Camarosa’ were either spray inoculated on leaves with a conidial suspension (106 conidia/ml) or injected (10 μl) into the crown of each plant. Ten plants inoculated with distilled water served as controls. Plants were covered with plastic bags for 48 h and placed in the greenhouse at 28°C. Leaf and crown rot symptoms were monitored weekly after inoculation. No symptoms or spores developed on leaves, which was also confirmed by a paraquat assay after the first 3 weeks. However, dark brown necrotic lesions were observed on the crowns 4 weeks after inoculation. The fungus was reisolated from the inoculated crown tissues. In another experiment, 10 immature (half-green and half-yellow) strawberry fruit (cv. ‘Chandler’) were surface sterilized with 70% ethanol and then 0.5% sodium hypochlorite for 30 s and rinsed with sterile distilled water three times. Fruit was injected with 10 μl of conidial suspension (106 conidia/ml) and placed in a plastic crisper container. Sterile distilled water–inoculated fruits served as controls. Fruits in the containers were incubated at 25°C in the dark. All experiments were conducted twice. Fruit rot symptoms were observed on fruits 3 days after inoculation, and the control fruits remained asymptomatic. Within the C. gloeosporioides species complex, C. aenigma, C. fructicola, C. siamense, and C. theobromicola were previously reported on strawberries (Baroncelli et al. 2015; Weir et al. 2012). More recently, C. siamense has been reported to cause crown rot of strawberry in Bangladesh (Gupta et al. 2018) and fruit rot on strawberry in Brazil (Capobiango et al. 2016). To our best knowledge, this is the first report of anthracnose causing both crown and fruit rot of strawberry by C. siamense, one of the species within the C. gloeosporioides complex, in North Carolina. This disease can seriously affect strawberry fruit quality and yield and is capable of producing resistance to Fungicide Resistance Action Committee code 11 fungicides (Hu et al. 2015); thus, effective disease management strategies should be investigated and implemented.The author(s) declare no conflict of interest.References:Baroncelli, R. et al. 2015. PLoS One 10:e0129140. https://doi.org/10.1371/journal.pone.0129140 Crossref, ISI, Google ScholarCapobiango, N. P. et al. 2016. Plant Dis. 100:859. https://doi.org/10.1094/PDIS-10-15-1121-PDN Link, ISI, Google ScholarDamm, U. et al. 2012. Stud. Mycol. 73:37. https://doi.org/10.3114/sim0010 Crossref, ISI, Google ScholarGupta, D. R. et al. 2018. Plant Dis. 103:580. https://doi.org/10.1094/PDIS-08-18-1461-PDN Link, ISI, Google ScholarHu, et al. 2015. Plant Dis. 99:806. https://doi.org/10.1094/PDIS-10-14-1077-RE Link, ISI, Google ScholarWeir, B. S., et al. 2012. Stud. Mycol. 73:115. https://doi.org/10.3114/sim0011 Crossref, ISI, Google ScholarWhite, T. J., et al. 1990. Page 315 in: PCR Protocols: A Guide to Methods and Applications. Academic Press, San Diego, CA. Crossref, Google ScholarThe author(s) declare no conflict of interest.DetailsFiguresLiterature CitedRelated Vol. 103, No. 7 July 2019SubscribeISSN:0191-2917e-ISSN:1943-7692 DownloadCaptionApple cultivar Joya Cripps Red lesions caused by Colletotrichum fructicola (Nodet et al.). Photo credit: P. Nodet. Symptoms of Lotus powdery mildew caused by Erysiphe takamatsui (Zhou et al.). Photo credit: C. Liang. Symptoms of tar spot (Phyllachora maydis) on maize leaves (Dalla Lana et al.). Photo credit: F. Dalla Lana. Metrics Article History Issue Date: 20 Jun 2019Published: 10 May 2019First Look: 4 Mar 2019Accepted: 13 Feb 2019 Pages: 1775-1775 Information© 2019 The American Phytopathological SocietyKeywordsfungismall fruitsetiologyThe author(s) declare no conflict of interest.Cited byComparative characterization and expression analysis revealed cinnamyl alcohol dehydrogenase genes differentially responding to Colletotrichum fructicola in woodland and cultivated strawberriesJournal of Berry Research, Vol. 13, No. 4Different responses to elevated temperature in the representative strains of strawberry pathogenic Colletotrichum spp.from eastern China9 December 2022 | Mycological Progress, Vol. 22, No. 1Identification and Observation of Infection Processes of Colletotrichum Species Associated with Pearl Plum Anthracnose in Guangxi, ChinaRong Huang, Qing Gui, Yujie Zhang, Wenxiu Sun, Lihua Tang, Suiping Huang, Tangxun Guo, Qili Li, Jianyou Mo, Huiye Huang, Mingzhong Fan, Zongbin Zhang, and Tom Hsiang20 November 2022 | Plant Disease, Vol. 106, No. 12Colletotrichum species pathogenic to strawberry: discovery history, global diversity, prevalence in China, and the host range of top two species16 November 2022 | Phytopathology Research, Vol. 4, No. 1Comparative Analysis of the Microbial Community Structures Between Healthy and Anthracnose-Infected Strawberry Rhizosphere Soils Using Illumina Sequencing Technology in Yunnan Province, Southwest of China16 May 2022 | Frontiers in Microbiology, Vol. 13Characterization of Colletotrichum siamense causing crown rot of strawberry in Jingzhou, Hubei Province18 August 2021 | Notulae Botanicae Horti Agrobotanici Cluj-Napoca, Vol. 49, No. 3Resistance to Azoxystrobin and Thiophanate-Methyl Is Widespread in Colletotrichum spp. Isolates From the Mid-Atlantic Strawberry FieldsQiuchen Luo, Anita Schoeneberg, and Mengjun Hu15 September 2021 | Plant Disease, Vol. 105, No. 8Diversity and Cross-Infection Potential of Colletotrichum Causing Fruit Rots in Mixed-Fruit Orchards in KentuckyMadison J. Eaton, Shanice Edwards, Harrison A. Inocencio, Franklin J. Machado, Etta M. Nuckles, Mark Farman, Nicole A. Gauthier, and Lisa J. Vaillancourt26 February 2021 | Plant Disease, Vol. 105, No. 4Diversity and pathogenicity of Colletotrichum species causing strawberry anthracnose in Taiwan and description of a new species, Colletotrichum miaoliense sp. nov.4 September 2020 | Scientific Reports, Vol. 10, No. 1

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
8R60d8应助爱学习的小花生采纳,获得10
2秒前
and发布了新的文献求助10
2秒前
英俊的铭应助研猫采纳,获得10
2秒前
pingpinglver完成签到,获得积分20
3秒前
花痴的向雁完成签到 ,获得积分10
3秒前
乖乖完成签到,获得积分10
4秒前
Chnp完成签到,获得积分10
4秒前
萧水白应助忧虑的土豆采纳,获得10
5秒前
高yq发布了新的文献求助20
7秒前
Chnp发布了新的文献求助30
7秒前
月光下的魔术师完成签到,获得积分10
7秒前
清风完成签到 ,获得积分10
8秒前
做科研怎么不会疯呢完成签到,获得积分10
8秒前
and完成签到,获得积分10
9秒前
9秒前
9秒前
11秒前
11秒前
迪西完成签到 ,获得积分10
11秒前
不配.应助以乐其志采纳,获得10
11秒前
11秒前
乐乐乐乐乐乐应助kkjl采纳,获得10
12秒前
12秒前
12秒前
孤竹雅弦完成签到,获得积分10
13秒前
14秒前
14秒前
大白小杨发布了新的文献求助10
15秒前
jean52158发布了新的文献求助10
16秒前
17秒前
参宿七发布了新的文献求助10
17秒前
小吴shz发布了新的文献求助10
18秒前
20秒前
20秒前
21秒前
18922406869发布了新的文献求助30
24秒前
灵零铃发布了新的文献求助10
25秒前
欣喜的不惜完成签到,获得积分10
27秒前
27秒前
28秒前
高分求助中
Shape Determination of Large Sedimental Rock Fragments 2000
Sustainability in Tides Chemistry 2000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3128954
求助须知:如何正确求助?哪些是违规求助? 2779683
关于积分的说明 7744576
捐赠科研通 2434926
什么是DOI,文献DOI怎么找? 1293779
科研通“疑难数据库(出版商)”最低求助积分说明 623432
版权声明 600530