Surface Depletion Layers in Plasmonic Metal Oxide Nanocrystals

材料科学 等离子体子 表面等离子共振 光热治疗 载流子 氧化物 光电子学 电介质 表面电荷 纳米技术 电致变色 掺杂剂 表面等离子体子 兴奋剂 半导体 纳米颗粒 化学 电极 物理化学 冶金
作者
Stephen L. Gibbs,Corey M. Staller,Delia J. Milliron
出处
期刊:Accounts of Chemical Research [American Chemical Society]
卷期号:52 (9): 2516-2524 被引量:63
标识
DOI:10.1021/acs.accounts.9b00287
摘要

Strong infrared (IR) light-matter interaction and spectral tunability combine to make plasmonic metal oxide nanocrystals (NCs) a compelling choice for IR applications. In particular, visible transparency paired with strong, dynamically tunable IR absorption has motivated their implementation in electrochromic smart windows, but these NCs hold promise for a far broader range of plasmonically driven processes such as surface-enhanced infrared sensing, photothermal therapy, and enhanced photocatalysis. These unique properties result from localized surface plasmon resonance (LSPR) sustained by a relatively low free charge carrier concentration, which in turn requires consideration of distinct materials physics relative to traditional plasmonic materials (i.e., metals). Particularly important is the formation of insulating shells devoid of charge carriers (depletion layers) near the NC surface. Surface states as well as applied surface potentials can give rise to a potential difference between the NC surface and its core that depletes free charge carriers from the surface, forming an insulating shell that reduces the conductivity in NC films, lowers the dielectric sensitivity of the LSPR, and diminishes the incident electric field enhancement. In this Account, we report recent investigations of depletion layers in plasmonic metal oxide NCs that have advanced understanding of the semiconductor physics underlying the optoelectronic properties of these NCs and the electrochemical modulation of their LSPR, establishing a conceptual framework with which to broaden their applicability and optimize their performance. As a result of surface depletion, larger, highly doped NCs have improved dielectric sensitivity compared with their smaller, lightly doped counterparts. Concentrating dopants near the NC surface compresses the depletion layer, resulting in improved conductivity of NC films. Moreover, atomic layer deposition of alumina to infill NC films enhances the film conductivity by more than 2 orders of magnitude, ascribed to the elimination of depletion effects by reactive removal of surface water species. At the conclusion, we reflect on how our newfound understanding of surface depletion in plasmonic metal oxide NCs is quickly leading to rational material design. This insight is already resulting in significant performance improvements, and the same principles can be applied to new, exciting opportunities in hot carrier extraction and resonant IR energy transduction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
123发布了新的文献求助10
2秒前
Wsixg发布了新的文献求助10
2秒前
摸鱼学原理完成签到,获得积分10
2秒前
鼻揩了转去应助猪猪hero采纳,获得10
2秒前
3秒前
理理发布了新的文献求助10
4秒前
4秒前
852应助茵似采纳,获得10
4秒前
静穆儿完成签到,获得积分10
5秒前
6秒前
6秒前
Ahsndm完成签到,获得积分20
7秒前
从容道罡完成签到,获得积分20
8秒前
诺之完成签到,获得积分20
9秒前
Estrella完成签到 ,获得积分10
9秒前
吴书维发布了新的文献求助10
9秒前
我要发文章完成签到,获得积分10
10秒前
小马爷关注了科研通微信公众号
11秒前
路易啊发布了新的文献求助10
11秒前
虚心的如曼完成签到 ,获得积分10
12秒前
思源应助yuefeng采纳,获得10
12秒前
早日毕业发布了新的文献求助30
12秒前
13秒前
lawren完成签到,获得积分10
13秒前
COCO完成签到,获得积分10
13秒前
14秒前
16秒前
赘婿应助猪猪hero采纳,获得10
16秒前
16秒前
17秒前
大模型应助ylz采纳,获得10
17秒前
小蘑菇应助tang采纳,获得10
18秒前
dhan发布了新的文献求助10
18秒前
19秒前
谭谨川完成签到,获得积分10
20秒前
21秒前
hfhkjh发布了新的文献求助10
21秒前
lalalala发布了新的文献求助10
23秒前
眠茶醒药发布了新的文献求助10
23秒前
小马甲应助晚风采纳,获得10
24秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
The Laschia-complex (Basidiomycetes) 600
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3540600
求助须知:如何正确求助?哪些是违规求助? 3117879
关于积分的说明 9332947
捐赠科研通 2815724
什么是DOI,文献DOI怎么找? 1547709
邀请新用户注册赠送积分活动 721130
科研通“疑难数据库(出版商)”最低求助积分说明 712481