亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

CT-based deep learning model to differentiate invasive pulmonary adenocarcinomas appearing as subsolid nodules among surgical candidates: comparison of the diagnostic performance with a size-based logistic model and radiologists

医学 神经组阅片室 介入放射学 放射科 逻辑回归 超声波 肺孤立结节 计算机断层摄影术 内科学 神经学 精神科
作者
Hyungjin Kim,Dongheon Lee,Woo Sang Cho,Jung Chan Lee,Jin Mo Goo,Hee Chan Kim,Chang Min Park
出处
期刊:European Radiology [Springer Nature]
卷期号:30 (6): 3295-3305 被引量:39
标识
DOI:10.1007/s00330-019-06628-4
摘要

To evaluate the deep learning models for differentiating invasive pulmonary adenocarcinomas (IACs) among subsolid nodules (SSNs) considered for resection in a retrospective diagnostic cohort in comparison with a size-based logistic model and expert radiologists. This study included 525 patients (309 women; median, 62 years) to develop models, and an independent cohort of 101 patients (57 women; median, 66 years) was used for validation. A size-based logistic model and deep learning models using 2.5-dimension (2.5D) and three-dimension (3D) CT images were developed to discriminate IAC from less invasive pathologies. Overall performance, discrimination, and calibration were assessed. Diagnostic performances of the three thoracic radiologists were compared with those of the deep learning model. The overall performances of the deep learning models (Brier score, 0.122 for the 2.5D DenseNet and 0.121 for the 3D DenseNet) were superior to those of the size-based logistic model (Brier score, 0.198). The area under the receiver operating characteristic curve (AUC) of the 2.5D DenseNet (0.921) was significantly higher than that of the 3D DenseNet (0.835; p = 0.037) and the size-based logistic model (0.836; p = 0.009). At equally high sensitivities of 90%, the 2.5D DenseNet showed significantly higher specificity (88.2%; all p < 0.05) and positive predictive value (97.4%; all p < 0.05) than other models. Model calibration was poor for all models (all p < 0.05). The 2.5D DenseNet had a comparable performance with the radiologists (AUC, 0.848–0.910). The 2.5D DenseNet model could be used as a highly sensitive and specific diagnostic tool to differentiate IACs among SSNs for surgical candidates. • The deep learning model developed using 2.5D DenseNet showed higher overall performance and discrimination than the size-based logistic model for the differentiation of invasive adenocarcinomas among subsolid nodules for surgical candidates. • The 2.5D DenseNet demonstrated a thoracic radiologist–level diagnostic performance and had higher specificity (88.2%) at equal sensitivities (90%) than the size-based logistic model (specificity, 52.9%). • The 2.5D DenseNet could be used to reduce potential overtreatment for the indolent subsolid nodules or to select candidates for sublobar resection instead of the standard lobectomy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研友_xnE65Z完成签到 ,获得积分10
30秒前
49秒前
科研通AI6应助酷炫画板采纳,获得10
1分钟前
科研通AI6应助酷炫画板采纳,获得10
1分钟前
完美世界应助外星人采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
外星人发布了新的文献求助10
1分钟前
外星人完成签到,获得积分10
2分钟前
2分钟前
2分钟前
今后应助科研通管家采纳,获得10
2分钟前
2分钟前
2分钟前
physicalproblem完成签到,获得积分10
2分钟前
3分钟前
酷炫画板发布了新的文献求助10
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
上官若男应助ceeray23采纳,获得20
3分钟前
3分钟前
Jarvis应助没有昵称采纳,获得10
3分钟前
Panther完成签到,获得积分10
3分钟前
酷炫画板发布了新的文献求助10
4分钟前
4分钟前
4分钟前
ceeray23发布了新的文献求助20
4分钟前
bkagyin应助科研通管家采纳,获得10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
领导范儿应助科研通管家采纳,获得10
4分钟前
4分钟前
5分钟前
陆上飞完成签到,获得积分10
5分钟前
5分钟前
量子星尘发布了新的文献求助10
5分钟前
6分钟前
小二郎应助科研通管家采纳,获得10
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 921
Aerospace Standards Index - 2025 800
Identifying dimensions of interest to support learning in disengaged students: the MINE project 800
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5432470
求助须知:如何正确求助?哪些是违规求助? 4545019
关于积分的说明 14195123
捐赠科研通 4464404
什么是DOI,文献DOI怎么找? 2447078
邀请新用户注册赠送积分活动 1438433
关于科研通互助平台的介绍 1415264