已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

CT-based deep learning model to differentiate invasive pulmonary adenocarcinomas appearing as subsolid nodules among surgical candidates: comparison of the diagnostic performance with a size-based logistic model and radiologists

医学 神经组阅片室 介入放射学 放射科 逻辑回归 超声波 肺孤立结节 计算机断层摄影术 内科学 神经学 精神科
作者
Hyungjin Kim,Dongheon Lee,Woo Sang Cho,Jung Chan Lee,Jin Mo Goo,Hee Chan Kim,Chang Min Park
出处
期刊:European Radiology [Springer Nature]
卷期号:30 (6): 3295-3305 被引量:39
标识
DOI:10.1007/s00330-019-06628-4
摘要

To evaluate the deep learning models for differentiating invasive pulmonary adenocarcinomas (IACs) among subsolid nodules (SSNs) considered for resection in a retrospective diagnostic cohort in comparison with a size-based logistic model and expert radiologists. This study included 525 patients (309 women; median, 62 years) to develop models, and an independent cohort of 101 patients (57 women; median, 66 years) was used for validation. A size-based logistic model and deep learning models using 2.5-dimension (2.5D) and three-dimension (3D) CT images were developed to discriminate IAC from less invasive pathologies. Overall performance, discrimination, and calibration were assessed. Diagnostic performances of the three thoracic radiologists were compared with those of the deep learning model. The overall performances of the deep learning models (Brier score, 0.122 for the 2.5D DenseNet and 0.121 for the 3D DenseNet) were superior to those of the size-based logistic model (Brier score, 0.198). The area under the receiver operating characteristic curve (AUC) of the 2.5D DenseNet (0.921) was significantly higher than that of the 3D DenseNet (0.835; p = 0.037) and the size-based logistic model (0.836; p = 0.009). At equally high sensitivities of 90%, the 2.5D DenseNet showed significantly higher specificity (88.2%; all p < 0.05) and positive predictive value (97.4%; all p < 0.05) than other models. Model calibration was poor for all models (all p < 0.05). The 2.5D DenseNet had a comparable performance with the radiologists (AUC, 0.848–0.910). The 2.5D DenseNet model could be used as a highly sensitive and specific diagnostic tool to differentiate IACs among SSNs for surgical candidates. • The deep learning model developed using 2.5D DenseNet showed higher overall performance and discrimination than the size-based logistic model for the differentiation of invasive adenocarcinomas among subsolid nodules for surgical candidates. • The 2.5D DenseNet demonstrated a thoracic radiologist–level diagnostic performance and had higher specificity (88.2%) at equal sensitivities (90%) than the size-based logistic model (specificity, 52.9%). • The 2.5D DenseNet could be used to reduce potential overtreatment for the indolent subsolid nodules or to select candidates for sublobar resection instead of the standard lobectomy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
欣喜宛海完成签到 ,获得积分10
2秒前
3秒前
5秒前
夏琳发布了新的文献求助20
7秒前
小白菜发布了新的文献求助10
7秒前
不知道叫什么完成签到 ,获得积分10
9秒前
清脆映真发布了新的文献求助10
9秒前
10秒前
ZXR发布了新的文献求助30
12秒前
13秒前
呀学习发布了新的文献求助10
13秒前
trojan621完成签到,获得积分10
14秒前
kytlnj发布了新的文献求助10
15秒前
15秒前
安静的早晨完成签到,获得积分20
17秒前
科研通AI2S应助YangSihan采纳,获得10
17秒前
zhang发布了新的文献求助10
17秒前
RockRedfoo完成签到 ,获得积分10
19秒前
21秒前
shiningsun31发布了新的文献求助10
22秒前
fane发布了新的文献求助10
24秒前
26秒前
在水一方应助geoman采纳,获得10
26秒前
26秒前
29秒前
linuo完成签到,获得积分10
33秒前
33秒前
34秒前
小卷粉发布了新的文献求助50
36秒前
bkagyin应助rebecka采纳,获得10
36秒前
m30发布了新的文献求助10
37秒前
38秒前
CipherSage应助清脆映真采纳,获得10
39秒前
39秒前
巧乐兹发布了新的文献求助10
40秒前
大观天下发布了新的文献求助10
41秒前
41秒前
wanci应助bird0912采纳,获得10
42秒前
wang完成签到,获得积分10
42秒前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1000
Les Mantodea de Guyane 800
Mantids of the euro-mediterranean area 700
Plate Tectonics 500
Igneous rocks and processes: a practical guide(第二版) 500
Mantodea of the World: Species Catalog 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3407659
求助须知:如何正确求助?哪些是违规求助? 3012193
关于积分的说明 8852942
捐赠科研通 2699358
什么是DOI,文献DOI怎么找? 1479946
科研通“疑难数据库(出版商)”最低求助积分说明 684111
邀请新用户注册赠送积分活动 678360