CT-based deep learning model to differentiate invasive pulmonary adenocarcinomas appearing as subsolid nodules among surgical candidates: comparison of the diagnostic performance with a size-based logistic model and radiologists

医学 神经组阅片室 介入放射学 放射科 逻辑回归 超声波 肺孤立结节 计算机断层摄影术 内科学 神经学 精神科
作者
Hyungjin Kim,Dongheon Lee,Woo Sang Cho,Jung Chan Lee,Jin Mo Goo,Hee Chan Kim,Chang Min Park
出处
期刊:European Radiology [Springer Science+Business Media]
卷期号:30 (6): 3295-3305 被引量:39
标识
DOI:10.1007/s00330-019-06628-4
摘要

To evaluate the deep learning models for differentiating invasive pulmonary adenocarcinomas (IACs) among subsolid nodules (SSNs) considered for resection in a retrospective diagnostic cohort in comparison with a size-based logistic model and expert radiologists. This study included 525 patients (309 women; median, 62 years) to develop models, and an independent cohort of 101 patients (57 women; median, 66 years) was used for validation. A size-based logistic model and deep learning models using 2.5-dimension (2.5D) and three-dimension (3D) CT images were developed to discriminate IAC from less invasive pathologies. Overall performance, discrimination, and calibration were assessed. Diagnostic performances of the three thoracic radiologists were compared with those of the deep learning model. The overall performances of the deep learning models (Brier score, 0.122 for the 2.5D DenseNet and 0.121 for the 3D DenseNet) were superior to those of the size-based logistic model (Brier score, 0.198). The area under the receiver operating characteristic curve (AUC) of the 2.5D DenseNet (0.921) was significantly higher than that of the 3D DenseNet (0.835; p = 0.037) and the size-based logistic model (0.836; p = 0.009). At equally high sensitivities of 90%, the 2.5D DenseNet showed significantly higher specificity (88.2%; all p < 0.05) and positive predictive value (97.4%; all p < 0.05) than other models. Model calibration was poor for all models (all p < 0.05). The 2.5D DenseNet had a comparable performance with the radiologists (AUC, 0.848–0.910). The 2.5D DenseNet model could be used as a highly sensitive and specific diagnostic tool to differentiate IACs among SSNs for surgical candidates. • The deep learning model developed using 2.5D DenseNet showed higher overall performance and discrimination than the size-based logistic model for the differentiation of invasive adenocarcinomas among subsolid nodules for surgical candidates. • The 2.5D DenseNet demonstrated a thoracic radiologist–level diagnostic performance and had higher specificity (88.2%) at equal sensitivities (90%) than the size-based logistic model (specificity, 52.9%). • The 2.5D DenseNet could be used to reduce potential overtreatment for the indolent subsolid nodules or to select candidates for sublobar resection instead of the standard lobectomy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
淡然棒球关注了科研通微信公众号
刚刚
bkagyin应助youlico采纳,获得10
1秒前
可爱的函函应助猫小曼采纳,获得10
1秒前
完美世界应助23lk采纳,获得10
3秒前
wwmmyy完成签到 ,获得积分10
3秒前
传奇3应助hh采纳,获得10
4秒前
喵小权完成签到,获得积分10
4秒前
arzw完成签到,获得积分10
5秒前
小笨猪完成签到,获得积分10
7秒前
menmian完成签到,获得积分10
8秒前
8秒前
猫小曼完成签到,获得积分10
9秒前
9秒前
Lau完成签到,获得积分10
12秒前
李健应助瘦瘦的小之采纳,获得10
13秒前
kk发布了新的文献求助10
13秒前
丁丁猫老大完成签到 ,获得积分10
14秒前
狂野的驳完成签到 ,获得积分10
14秒前
15秒前
geen完成签到,获得积分10
15秒前
海清完成签到,获得积分10
16秒前
CodeCraft应助22222采纳,获得10
16秒前
hh发布了新的文献求助10
17秒前
17秒前
LinYX完成签到,获得积分10
18秒前
852应助kk采纳,获得10
18秒前
上官若男应助kk采纳,获得10
18秒前
18秒前
momo发布了新的文献求助30
20秒前
YunJi发布了新的文献求助10
21秒前
大模型应助对映体采纳,获得30
22秒前
乐乐2333333关注了科研通微信公众号
22秒前
23秒前
23秒前
共享精神应助菲菲采纳,获得10
23秒前
NexusExplorer应助马楼采纳,获得10
24秒前
海清发布了新的文献求助10
24秒前
25秒前
kk发布了新的文献求助10
27秒前
28秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956621
求助须知:如何正确求助?哪些是违规求助? 3502685
关于积分的说明 11109755
捐赠科研通 3233502
什么是DOI,文献DOI怎么找? 1787408
邀请新用户注册赠送积分活动 870676
科研通“疑难数据库(出版商)”最低求助积分说明 802143