LifeTag

计算机科学
作者
Jie Wen,Dan Zhou,Haoran Feng,Yongcai Wang,Xiongfei Geng,MA Hengzhe,Zongwei Yang
标识
DOI:10.1145/3375998.3376043
摘要

For lifesaving in shipwreck accidents, a wearable device, called LifeTag is designed for marine travellers. The LifeTag integrates localization, communication and life-sign detection modules, which will be triggered on automatically when falling into water and broadcasts the location and life status of the drowning people, so that rescuing ships within 10 nautical miles can receive the signal. This will speed up the drowning people searching and rescue process to improve the lifesaving probability. This paper focuses on the design of data processing technique to accurately detect the life status of drowning people. Real experiments are conducted which show that the inertial sensor data can be processed by machine learning method to efficiently detect the drowning people's life sign. But a challenge problem is that LifeTag requires a very efficient implementation of the classifier, which needs to be embedded into the resource limited firmware of the LifeTag device. To accomplish this, we investigate key feature selection and seek for the efficient and effective classifier design. A simplified online classifier is therefore investigated. Finally, we implement the optimized classifier into the firm ware. Practical experiments verify nearly 100% prediction accuracy of the proposed solutions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
风吹枫落完成签到,获得积分10
1秒前
minne发布了新的文献求助10
1秒前
2秒前
Monet完成签到,获得积分10
2秒前
明理如凡完成签到,获得积分10
2秒前
3秒前
Mxmmmmmm发布了新的文献求助10
3秒前
大紫罗兰馒头完成签到 ,获得积分10
3秒前
TT完成签到,获得积分10
4秒前
内向如南发布了新的文献求助10
4秒前
Akim应助ipan918采纳,获得10
4秒前
星睿发布了新的文献求助10
5秒前
5秒前
坚强的曼雁完成签到,获得积分10
6秒前
6秒前
00完成签到,获得积分10
7秒前
依灵完成签到,获得积分10
7秒前
8秒前
单薄紫菜完成签到,获得积分10
8秒前
8秒前
樊尔风完成签到,获得积分10
9秒前
全ct发布了新的文献求助10
9秒前
ED应助感性的手链采纳,获得30
10秒前
10秒前
wsh发布了新的文献求助10
11秒前
Yolo完成签到,获得积分10
11秒前
霉凡脑完成签到,获得积分10
11秒前
Liang完成签到 ,获得积分10
12秒前
祝你勇敢发布了新的文献求助10
12秒前
少7一点8发布了新的文献求助10
12秒前
13秒前
13秒前
自然的思柔完成签到 ,获得积分10
13秒前
14秒前
14秒前
尘世迷途小书童完成签到,获得积分10
14秒前
15秒前
15秒前
小明发布了新的文献求助20
15秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3842080
求助须知:如何正确求助?哪些是违规求助? 3384261
关于积分的说明 10533503
捐赠科研通 3104566
什么是DOI,文献DOI怎么找? 1709737
邀请新用户注册赠送积分活动 823319
科研通“疑难数据库(出版商)”最低求助积分说明 773970