FBDM based time-frequency representation for sleep stages classification using EEG signals

计算机科学 时频表示法 希尔伯特变换 模式识别(心理学) 人工智能 傅里叶变换 时频分析 脑电图 瞬时相位 解析信号 信号(编程语言) 希尔伯特-黄变换 短时傅里叶变换 卷积神经网络 语音识别 分类器(UML) 信号处理 算法 滤波器(信号处理) 数学 傅里叶分析 数字信号处理 计算机视觉 精神科 数学分析 计算机硬件 程序设计语言 心理学
作者
Vipin Gupta,Ram Bilas Pachori
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:64: 102265-102265 被引量:20
标识
DOI:10.1016/j.bspc.2020.102265
摘要

In this paper, we have proposed a new method of time-frequency representation (TFR) which is based on the Fourier-Bessel decomposition method (FBDM). This proposed method is an advanced version of the existing Fourier decomposition method (FDM). The proposed method decomposes the non-stationary signal into a finite number of Fourier-Bessel intrinsic band functions (FBIBFs). The FBIBFs are the real parts of analytic FBIBFs (AFBIBFs) which are obtained from an analytic signal during frequency scanning (FS) operations. The Hilbert transform (HT) is used to generate an analytic signal from the Fourier-Bessel series (FBS) expansion of an arbitrary signal. In addition to FBDM, we have also proposed zero-phase filter-bank based FBDM in order to get fix number of FBIBFs in this work. The performance of the proposed FBDM has been evaluated with the help of Poverall measure and TFR analysis of synthesized signals. The experimental results and performance measures show that the proposed FBDM is more capable for analysis of non-stationary multi-component signals such as linear frequency modulated and nonlinear frequency modulated signals as compared to the existing methods. The developed FBDM has also been used for the classification of six different sleep stages using electroencephalogram (EEG) signals. The convolutional neural network (CNN) classifier has been utilized for the classification of TFR images, which were obtained with the application of FBDM on a publicly available sleep EEG signals database. The developed classification system has achieved 91.90% classification accuracy for the classification of six different sleep stages using EEG signals.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无奈的小松鼠完成签到,获得积分10
刚刚
刚刚
1秒前
吴鹏完成签到,获得积分10
1秒前
2秒前
2秒前
纯情的白开水完成签到 ,获得积分10
3秒前
充电宝应助ywt采纳,获得10
4秒前
芋泥桃桃完成签到,获得积分10
4秒前
5秒前
Liangang发布了新的文献求助10
5秒前
6秒前
上官若男应助科研通管家采纳,获得10
6秒前
orixero应助科研通管家采纳,获得10
6秒前
无花果应助hc采纳,获得10
6秒前
小马甲应助科研通管家采纳,获得10
6秒前
CodeCraft应助科研通管家采纳,获得10
7秒前
科研通AI6应助科研通管家采纳,获得10
7秒前
搜集达人应助科研通管家采纳,获得10
7秒前
科研通AI2S应助科研通管家采纳,获得10
7秒前
天天快乐应助科研通管家采纳,获得10
7秒前
7秒前
JamesPei应助科研通管家采纳,获得10
7秒前
只争朝夕应助科研通管家采纳,获得10
7秒前
bkagyin应助科研通管家采纳,获得10
7秒前
脑洞疼应助科研通管家采纳,获得10
7秒前
传奇3应助科研通管家采纳,获得10
7秒前
香蕉诗蕊应助科研通管家采纳,获得10
8秒前
大模型应助科研通管家采纳,获得10
8秒前
姜姗完成签到 ,获得积分10
8秒前
慕青应助科研通管家采纳,获得10
8秒前
领导范儿应助科研通管家采纳,获得100
8秒前
英俊的铭应助科研通管家采纳,获得10
8秒前
搜集达人应助科研通管家采纳,获得10
8秒前
8秒前
汉堡包应助赵一采纳,获得10
8秒前
CodeCraft应助LWL200112采纳,获得10
10秒前
RUIRUI发布了新的文献求助10
10秒前
11秒前
Trace2023发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
King Tyrant 600
Essential Guides for Early Career Teachers: Mental Well-being and Self-care 500
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5563365
求助须知:如何正确求助?哪些是违规求助? 4648180
关于积分的说明 14684015
捐赠科研通 4590235
什么是DOI,文献DOI怎么找? 2518383
邀请新用户注册赠送积分活动 1491088
关于科研通互助平台的介绍 1462369