FBDM based time-frequency representation for sleep stages classification using EEG signals

计算机科学 时频表示法 希尔伯特变换 模式识别(心理学) 人工智能 傅里叶变换 时频分析 脑电图 瞬时相位 解析信号 信号(编程语言) 希尔伯特-黄变换 短时傅里叶变换 卷积神经网络 语音识别 分类器(UML) 信号处理 算法 滤波器(信号处理) 数学 傅里叶分析 数字信号处理 计算机视觉 精神科 数学分析 计算机硬件 程序设计语言 心理学
作者
Vipin Gupta,Ram Bilas Pachori
出处
期刊:Biomedical Signal Processing and Control [Elsevier BV]
卷期号:64: 102265-102265 被引量:20
标识
DOI:10.1016/j.bspc.2020.102265
摘要

In this paper, we have proposed a new method of time-frequency representation (TFR) which is based on the Fourier-Bessel decomposition method (FBDM). This proposed method is an advanced version of the existing Fourier decomposition method (FDM). The proposed method decomposes the non-stationary signal into a finite number of Fourier-Bessel intrinsic band functions (FBIBFs). The FBIBFs are the real parts of analytic FBIBFs (AFBIBFs) which are obtained from an analytic signal during frequency scanning (FS) operations. The Hilbert transform (HT) is used to generate an analytic signal from the Fourier-Bessel series (FBS) expansion of an arbitrary signal. In addition to FBDM, we have also proposed zero-phase filter-bank based FBDM in order to get fix number of FBIBFs in this work. The performance of the proposed FBDM has been evaluated with the help of Poverall measure and TFR analysis of synthesized signals. The experimental results and performance measures show that the proposed FBDM is more capable for analysis of non-stationary multi-component signals such as linear frequency modulated and nonlinear frequency modulated signals as compared to the existing methods. The developed FBDM has also been used for the classification of six different sleep stages using electroencephalogram (EEG) signals. The convolutional neural network (CNN) classifier has been utilized for the classification of TFR images, which were obtained with the application of FBDM on a publicly available sleep EEG signals database. The developed classification system has achieved 91.90% classification accuracy for the classification of six different sleep stages using EEG signals.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
阔达的无剑完成签到,获得积分10
1秒前
桐桐应助sszxlijin采纳,获得10
1秒前
3秒前
Ran发布了新的文献求助10
3秒前
隐形曼青应助Della采纳,获得10
4秒前
yitai完成签到,获得积分10
4秒前
jjjjj发布了新的文献求助30
5秒前
杜兰特发布了新的文献求助20
6秒前
8秒前
木心应助负责小蜜蜂采纳,获得10
8秒前
Rondab应助负责小蜜蜂采纳,获得30
8秒前
shenzhou9发布了新的文献求助10
9秒前
9秒前
10秒前
10秒前
12秒前
rrgogo发布了新的文献求助10
12秒前
12秒前
酷波er应助展希希采纳,获得10
13秒前
慕青应助xn201120采纳,获得10
14秒前
七七完成签到,获得积分10
14秒前
Della发布了新的文献求助10
15秒前
gogoyoco发布了新的文献求助10
15秒前
符小俊完成签到,获得积分10
17秒前
旷野发布了新的文献求助10
17秒前
mammer完成签到,获得积分10
18秒前
左肩微笑完成签到,获得积分10
18秒前
来来完成签到,获得积分10
20秒前
Cochrane完成签到,获得积分0
20秒前
Hey关闭了Hey文献求助
21秒前
jjjjj完成签到,获得积分20
22秒前
22秒前
8R60d8应助yitai采纳,获得10
23秒前
科研助手6应助yitai采纳,获得10
23秒前
脑洞疼应助man采纳,获得10
23秒前
来来发布了新的文献求助10
23秒前
yizhiGao应助科研通管家采纳,获得10
25秒前
思源应助科研通管家采纳,获得10
25秒前
Akim应助科研通管家采纳,获得10
25秒前
852应助科研通管家采纳,获得10
25秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989550
求助须知:如何正确求助?哪些是违规求助? 3531774
关于积分的说明 11254747
捐赠科研通 3270278
什么是DOI,文献DOI怎么找? 1804966
邀请新用户注册赠送积分活动 882125
科研通“疑难数据库(出版商)”最低求助积分说明 809176