已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

‘Squeeze & excite’ guided few-shot segmentation of volumetric images

人工智能 分割 计算机视觉 弹丸 计算机科学 图像分割 模式识别(心理学) 化学 有机化学
作者
Abhijit Guha Roy,Shayan Siddiqui,Sebastian Pölsterl,Nassir Navab,Christian Wachinger
出处
期刊:Medical Image Analysis [Elsevier BV]
卷期号:59: 101587-101587 被引量:128
标识
DOI:10.1016/j.media.2019.101587
摘要

Deep neural networks enable highly accurate image segmentation, but require large amounts of manually annotated data for supervised training. Few-shot learning aims to address this shortcoming by learning a new class from a few annotated support examples. We introduce, a novel few-shot framework, for the segmentation of volumetric medical images with only a few annotated slices. Compared to other related works in computer vision, the major challenges are the absence of pre-trained networks and the volumetric nature of medical scans. We address these challenges by proposing a new architecture for few-shot segmentation that incorporates 'squeeze & excite' blocks. Our two-armed architecture consists of a conditioner arm, which processes the annotated support input and generates a task-specific representation. This representation is passed on to the segmenter arm that uses this information to segment the new query image. To facilitate efficient interaction between the conditioner and the segmenter arm, we propose to use 'channel squeeze & spatial excitation' blocks – a light-weight computational module – that enables heavy interaction between both the arms with negligible increase in model complexity. This contribution allows us to perform image segmentation without relying on a pre-trained model, which generally is unavailable for medical scans. Furthermore, we propose an efficient strategy for volumetric segmentation by optimally pairing a few slices of the support volume to all the slices of the query volume. We perform experiments for organ segmentation on whole-body contrast-enhanced CT scans from the Visceral Dataset. Our proposed model outperforms multiple baselines and existing approaches with respect to the segmentation accuracy by a significant margin. The source code is available at https://github.com/abhi4ssj/few-shot-segmentation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
谢朝邦完成签到 ,获得积分10
2秒前
大个应助笑点低紊采纳,获得10
6秒前
shuang完成签到 ,获得积分10
7秒前
9秒前
14秒前
火星人完成签到 ,获得积分10
15秒前
小马甲应助谨慎从露采纳,获得10
17秒前
小马甲应助科研进化中采纳,获得10
17秒前
笑点低紊发布了新的文献求助10
18秒前
23秒前
笑点低紊完成签到,获得积分10
24秒前
机智的孤兰完成签到 ,获得积分10
27秒前
谨慎从露发布了新的文献求助10
28秒前
希望天下0贩的0应助郭燥采纳,获得10
33秒前
碧蓝的大有完成签到,获得积分10
41秒前
潇洒的马里奥完成签到,获得积分10
42秒前
55秒前
旭旭完成签到 ,获得积分10
59秒前
59秒前
守一完成签到,获得积分10
59秒前
Akim应助王星星采纳,获得10
1分钟前
小二郎应助117采纳,获得10
1分钟前
1分钟前
江应怜完成签到 ,获得积分10
1分钟前
清澈水眸发布了新的文献求助10
1分钟前
哲000完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
邓邓完成签到 ,获得积分10
1分钟前
鄢懋卿应助认真努力发SCI采纳,获得20
1分钟前
1分钟前
117发布了新的文献求助10
1分钟前
Hello应助清澈水眸采纳,获得10
1分钟前
luster完成签到 ,获得积分10
1分钟前
乌龟完成签到,获得积分10
1分钟前
Skye完成签到 ,获得积分10
1分钟前
linkman发布了新的文献求助10
1分钟前
闫伯涵发布了新的文献求助30
1分钟前
1分钟前
100完成签到,获得积分10
1分钟前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965493
求助须知:如何正确求助?哪些是违规求助? 3510811
关于积分的说明 11155140
捐赠科研通 3245287
什么是DOI,文献DOI怎么找? 1792783
邀请新用户注册赠送积分活动 874096
科研通“疑难数据库(出版商)”最低求助积分说明 804176