‘Squeeze & excite’ guided few-shot segmentation of volumetric images

人工智能 分割 计算机视觉 弹丸 计算机科学 图像分割 模式识别(心理学) 化学 有机化学
作者
Abhijit Guha Roy,Shayan Siddiqui,Sebastian Pölsterl,Nassir Navab,Christian Wachinger
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:59: 101587-101587 被引量:117
标识
DOI:10.1016/j.media.2019.101587
摘要

Deep neural networks enable highly accurate image segmentation, but require large amounts of manually annotated data for supervised training. Few-shot learning aims to address this shortcoming by learning a new class from a few annotated support examples. We introduce, a novel few-shot framework, for the segmentation of volumetric medical images with only a few annotated slices. Compared to other related works in computer vision, the major challenges are the absence of pre-trained networks and the volumetric nature of medical scans. We address these challenges by proposing a new architecture for few-shot segmentation that incorporates 'squeeze & excite' blocks. Our two-armed architecture consists of a conditioner arm, which processes the annotated support input and generates a task-specific representation. This representation is passed on to the segmenter arm that uses this information to segment the new query image. To facilitate efficient interaction between the conditioner and the segmenter arm, we propose to use 'channel squeeze & spatial excitation' blocks – a light-weight computational module – that enables heavy interaction between both the arms with negligible increase in model complexity. This contribution allows us to perform image segmentation without relying on a pre-trained model, which generally is unavailable for medical scans. Furthermore, we propose an efficient strategy for volumetric segmentation by optimally pairing a few slices of the support volume to all the slices of the query volume. We perform experiments for organ segmentation on whole-body contrast-enhanced CT scans from the Visceral Dataset. Our proposed model outperforms multiple baselines and existing approaches with respect to the segmentation accuracy by a significant margin. The source code is available at https://github.com/abhi4ssj/few-shot-segmentation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
略略略完成签到 ,获得积分10
2秒前
靓丽初蓝完成签到,获得积分10
3秒前
NXZNXZ完成签到 ,获得积分10
3秒前
4秒前
陈M雯完成签到 ,获得积分10
5秒前
今天没有哭鸭完成签到,获得积分10
5秒前
道友等等我完成签到,获得积分0
8秒前
霸气雪珍完成签到,获得积分10
8秒前
科研达人发布了新的文献求助10
9秒前
9秒前
11秒前
深情安青应助搞怪的沛菡采纳,获得10
11秒前
强强完成签到,获得积分10
12秒前
Jiang完成签到,获得积分10
12秒前
drizzling完成签到,获得积分10
13秒前
annabel完成签到 ,获得积分10
14秒前
迅速的寻绿完成签到,获得积分10
15秒前
15秒前
MISSIW完成签到,获得积分10
15秒前
yongzaizhuigan完成签到,获得积分0
18秒前
陈里里完成签到 ,获得积分10
18秒前
19秒前
21秒前
科研通AI2S应助科研达人采纳,获得10
23秒前
annabel关注了科研通微信公众号
23秒前
刘丹丹发布了新的文献求助10
24秒前
concise完成签到 ,获得积分10
27秒前
SYSUer完成签到,获得积分10
32秒前
搬砖人完成签到,获得积分10
33秒前
啦啦啦完成签到,获得积分10
36秒前
unfeeling8完成签到 ,获得积分10
39秒前
手术刀完成签到 ,获得积分10
41秒前
闪闪青雪完成签到,获得积分10
42秒前
安静一曲完成签到 ,获得积分20
43秒前
可可可发布了新的文献求助10
44秒前
安安的小板栗完成签到,获得积分10
47秒前
大雄发布了新的文献求助30
48秒前
49秒前
星丶完成签到 ,获得积分10
51秒前
finejade完成签到 ,获得积分10
52秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3162430
求助须知:如何正确求助?哪些是违规求助? 2813350
关于积分的说明 7900043
捐赠科研通 2472900
什么是DOI,文献DOI怎么找? 1316594
科研通“疑难数据库(出版商)”最低求助积分说明 631375
版权声明 602155