‘Squeeze & excite’ guided few-shot segmentation of volumetric images

人工智能 分割 计算机视觉 弹丸 计算机科学 图像分割 模式识别(心理学) 化学 有机化学
作者
Abhijit Guha Roy,Shayan Siddiqui,Sebastian Pölsterl,Nassir Navab,Christian Wachinger
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:59: 101587-101587 被引量:128
标识
DOI:10.1016/j.media.2019.101587
摘要

Deep neural networks enable highly accurate image segmentation, but require large amounts of manually annotated data for supervised training. Few-shot learning aims to address this shortcoming by learning a new class from a few annotated support examples. We introduce, a novel few-shot framework, for the segmentation of volumetric medical images with only a few annotated slices. Compared to other related works in computer vision, the major challenges are the absence of pre-trained networks and the volumetric nature of medical scans. We address these challenges by proposing a new architecture for few-shot segmentation that incorporates 'squeeze & excite' blocks. Our two-armed architecture consists of a conditioner arm, which processes the annotated support input and generates a task-specific representation. This representation is passed on to the segmenter arm that uses this information to segment the new query image. To facilitate efficient interaction between the conditioner and the segmenter arm, we propose to use 'channel squeeze & spatial excitation' blocks – a light-weight computational module – that enables heavy interaction between both the arms with negligible increase in model complexity. This contribution allows us to perform image segmentation without relying on a pre-trained model, which generally is unavailable for medical scans. Furthermore, we propose an efficient strategy for volumetric segmentation by optimally pairing a few slices of the support volume to all the slices of the query volume. We perform experiments for organ segmentation on whole-body contrast-enhanced CT scans from the Visceral Dataset. Our proposed model outperforms multiple baselines and existing approaches with respect to the segmentation accuracy by a significant margin. The source code is available at https://github.com/abhi4ssj/few-shot-segmentation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
思源应助曹杨磊采纳,获得50
1秒前
传奇3应助甜菜采纳,获得10
2秒前
飞翔的霸天哥应助69qq采纳,获得30
3秒前
飞翔的霸天哥应助69qq采纳,获得30
3秒前
飞翔的霸天哥应助69qq采纳,获得30
3秒前
CipherSage应助69qq采纳,获得10
4秒前
哈哈发布了新的文献求助10
4秒前
净心完成签到 ,获得积分10
5秒前
louyu完成签到 ,获得积分0
5秒前
Jimmy完成签到,获得积分10
7秒前
baobaonaixi完成签到,获得积分10
8秒前
11秒前
LoganLee发布了新的文献求助10
11秒前
12秒前
寻道图强应助ernest采纳,获得30
13秒前
勾勾完成签到,获得积分20
13秒前
雾让空山完成签到,获得积分20
13秒前
Ciel完成签到 ,获得积分10
14秒前
14秒前
蚊香液发布了新的文献求助30
16秒前
16秒前
ccc完成签到,获得积分10
16秒前
丘比特应助asder采纳,获得20
18秒前
ho应助jiang采纳,获得10
18秒前
boge5633完成签到,获得积分10
19秒前
19秒前
jisean完成签到,获得积分10
20秒前
彩色的万仇完成签到 ,获得积分10
20秒前
wang发布了新的文献求助10
20秒前
打打应助sss采纳,获得10
22秒前
23秒前
斯文败类应助guzhfia采纳,获得10
23秒前
完美世界应助小穆采纳,获得10
23秒前
23秒前
小棉背心完成签到 ,获得积分10
23秒前
丘比特应助yzy采纳,获得10
24秒前
24秒前
我不看月亮完成签到,获得积分10
24秒前
25秒前
阿宋完成签到 ,获得积分10
26秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5350006
求助须知:如何正确求助?哪些是违规求助? 4483602
关于积分的说明 13956475
捐赠科研通 4382822
什么是DOI,文献DOI怎么找? 2408004
邀请新用户注册赠送积分活动 1400684
关于科研通互助平台的介绍 1373963