‘Squeeze & excite’ guided few-shot segmentation of volumetric images

人工智能 分割 计算机视觉 弹丸 计算机科学 图像分割 模式识别(心理学) 化学 有机化学
作者
Abhijit Guha Roy,Shayan Siddiqui,Sebastian Pölsterl,Nassir Navab,Christian Wachinger
出处
期刊:Medical Image Analysis [Elsevier BV]
卷期号:59: 101587-101587 被引量:128
标识
DOI:10.1016/j.media.2019.101587
摘要

Deep neural networks enable highly accurate image segmentation, but require large amounts of manually annotated data for supervised training. Few-shot learning aims to address this shortcoming by learning a new class from a few annotated support examples. We introduce, a novel few-shot framework, for the segmentation of volumetric medical images with only a few annotated slices. Compared to other related works in computer vision, the major challenges are the absence of pre-trained networks and the volumetric nature of medical scans. We address these challenges by proposing a new architecture for few-shot segmentation that incorporates 'squeeze & excite' blocks. Our two-armed architecture consists of a conditioner arm, which processes the annotated support input and generates a task-specific representation. This representation is passed on to the segmenter arm that uses this information to segment the new query image. To facilitate efficient interaction between the conditioner and the segmenter arm, we propose to use 'channel squeeze & spatial excitation' blocks – a light-weight computational module – that enables heavy interaction between both the arms with negligible increase in model complexity. This contribution allows us to perform image segmentation without relying on a pre-trained model, which generally is unavailable for medical scans. Furthermore, we propose an efficient strategy for volumetric segmentation by optimally pairing a few slices of the support volume to all the slices of the query volume. We perform experiments for organ segmentation on whole-body contrast-enhanced CT scans from the Visceral Dataset. Our proposed model outperforms multiple baselines and existing approaches with respect to the segmentation accuracy by a significant margin. The source code is available at https://github.com/abhi4ssj/few-shot-segmentation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
黄任行完成签到,获得积分10
刚刚
电量满格中完成签到 ,获得积分10
刚刚
langwang发布了新的文献求助10
刚刚
咖褐完成签到 ,获得积分10
刚刚
隐形曼青应助Magicer采纳,获得10
刚刚
刚刚
1秒前
1秒前
GGBOND完成签到,获得积分10
1秒前
1秒前
鉴湖完成签到,获得积分10
1秒前
2秒前
wang完成签到 ,获得积分10
2秒前
张小卷完成签到,获得积分10
2秒前
戈惜完成签到,获得积分10
2秒前
3秒前
3秒前
今天心情好朋友完成签到 ,获得积分10
3秒前
gkhsdvkb发布了新的文献求助10
3秒前
青梧衔云发布了新的文献求助10
4秒前
ls123lx发布了新的文献求助10
4秒前
Kyra12完成签到,获得积分10
5秒前
cleo完成签到,获得积分20
5秒前
寒冷的书瑶完成签到 ,获得积分10
5秒前
落后醉易完成签到,获得积分20
6秒前
whitexue发布了新的文献求助10
6秒前
努力努力发布了新的文献求助10
6秒前
7秒前
zh发布了新的文献求助10
8秒前
kiscoe完成签到,获得积分10
8秒前
Albert完成签到,获得积分10
8秒前
jelly10应助Qyyy采纳,获得30
8秒前
Ava应助舒服的代秋采纳,获得10
9秒前
孤独听荷发布了新的文献求助10
9秒前
DD完成签到 ,获得积分10
9秒前
wangmeiqiong完成签到,获得积分10
9秒前
李咸咸123完成签到,获得积分10
10秒前
10秒前
hhhhhyc完成签到 ,获得积分10
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
A Modern Guide to the Economics of Crime 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5270281
求助须知:如何正确求助?哪些是违规求助? 4428455
关于积分的说明 13784524
捐赠科研通 4306240
什么是DOI,文献DOI怎么找? 2363020
邀请新用户注册赠送积分活动 1358722
关于科研通互助平台的介绍 1321565