联营
可解释性
灵活性(工程)
机器学习
人工智能
集合(抽象数据类型)
计算机科学
概率逻辑
班级(哲学)
多样性(控制论)
深度学习
模式识别(心理学)
数学
统计
程序设计语言
作者
Maximilian Ilse,Jakub M. Tomczak,Max Welling
出处
期刊:Elsevier eBooks
[Elsevier]
日期:2020-01-01
卷期号:: 521-546
被引量:21
标识
DOI:10.1016/b978-0-12-816176-0.00027-2
摘要
Multiple instance learning (MIL) is a variation of supervised learning where a single class label is assigned to a set of instances, e.g., image patches. After providing a comprehensive introduction, we give a probabilistic definition of MIL. We move on introducing three different MIL approaches and show how they dictate the design of deep neural networks for MIL. Consequently a variety of MIL pooling functions is presented. We compare those pooling functions regarding their interpretability and flexibility. Finally, we evaluate the different MIL approaches and pooling functions on two histopathology datasets. Here, we put great emphasis on the details of the experiment design, including histopathology-specific augmentation techniques and MIL-specific evaluation metrics.
科研通智能强力驱动
Strongly Powered by AbleSci AI