Tubular Structure Segmentation Using Spatial Fully Connected Network with Radial Distance Loss for 3D Medical Images

分割 计算机科学 体素 距离变换 人工智能 中轴 图像分割 计算机视觉 模式识别(心理学) 图像(数学)
作者
Chenglong Wang,Yuichiro Hayashi,Masahiro Oda,Hayato Itoh,Takayuki Kitasaka,Alejandro F. Frangi,Kensaku Mori
出处
期刊:Lecture Notes in Computer Science 卷期号:: 348-356 被引量:25
标识
DOI:10.1007/978-3-030-32226-7_39
摘要

This paper presents a new spatial fully connected tubular network for 3D tubular-structure segmentation. Automatic and complete segmentation of intricate tubular structures remains an unsolved challenge in the medical image analysis. Airways and vasculature pose high demands on medical image analysis as they are elongated fine structures with calibers ranging from several tens of voxels to voxel-level resolution, branching in deeply multi-scale fashion, and with complex topological and spatial relationships. Most machine/deep learning approaches are based on intensity features and ignore spatial consistency across the network that are otherwise distinct in tubular structures. In this work, we introduce 3D slice-by-slice convolutional layers in a U-Net architecture to capture the spatial information of elongated structures. Furthermore, we present a novel loss function, coined radial distance loss, specifically designed for tubular structures. The commonly used methods of cross-entropy loss and generalized Dice loss are sensitive to volumetric variation. However, in tiny tubular structure segmentation, topological errors are as important as volumetric errors. The proposed radial distance loss places higher weight to the centerline, and this weight decreases along the radial direction. Radial distance loss can help networks focus more attention on tiny structures than on thicker tubular structures. We perform experiments on bronchus segmentation on 3D CT images. The experimental results show that compared to the baseline U-Net, our proposed network achieved improvement about 24% and 30% in Dice index and centerline over ratio.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
万事无忧发布了新的文献求助10
1秒前
英姑应助黑子哥采纳,获得10
1秒前
天天快乐应助十三采纳,获得20
2秒前
丰丰应助科研通管家采纳,获得10
3秒前
大模型应助科研通管家采纳,获得10
3秒前
3秒前
科目三应助科研通管家采纳,获得10
3秒前
李健应助科研通管家采纳,获得10
3秒前
劲秉应助科研通管家采纳,获得10
3秒前
3秒前
汉堡包应助科研通管家采纳,获得10
3秒前
香蕉觅云应助科研通管家采纳,获得10
3秒前
prosperp应助科研通管家采纳,获得10
3秒前
852应助科研通管家采纳,获得10
3秒前
3秒前
科研通AI2S应助科研通管家采纳,获得10
3秒前
慕青应助科研通管家采纳,获得10
3秒前
英姑应助科研通管家采纳,获得10
3秒前
深情安青应助科研通管家采纳,获得30
3秒前
搜集达人应助科研通管家采纳,获得10
4秒前
丰丰应助科研通管家采纳,获得10
4秒前
CipherSage应助科研通管家采纳,获得30
4秒前
无花果应助科研通管家采纳,获得10
4秒前
无花果应助科研通管家采纳,获得10
4秒前
4秒前
CodeCraft应助科研通管家采纳,获得10
4秒前
无花果应助科研通管家采纳,获得10
4秒前
4秒前
36456657应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
SciGPT应助科研通管家采纳,获得10
4秒前
彭于彦祖应助科研通管家采纳,获得20
4秒前
Jasper应助科研通管家采纳,获得10
4秒前
5秒前
寒士完成签到,获得积分10
5秒前
英俊的铭应助曾经二娘采纳,获得10
5秒前
怡然犀牛完成签到,获得积分10
5秒前
和谐的映梦完成签到,获得积分10
6秒前
一一应助外向的跳跳糖采纳,获得20
6秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
지식생태학: 생태학, 죽은 지식을 깨우다 600
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3461806
求助须知:如何正确求助?哪些是违规求助? 3055500
关于积分的说明 9048149
捐赠科研通 2745215
什么是DOI,文献DOI怎么找? 1506088
科研通“疑难数据库(出版商)”最低求助积分说明 695974
邀请新用户注册赠送积分活动 695472