Tubular Structure Segmentation Using Spatial Fully Connected Network with Radial Distance Loss for 3D Medical Images

分割 计算机科学 体素 距离变换 人工智能 中轴 图像分割 计算机视觉 模式识别(心理学) 图像(数学)
作者
Chenglong Wang,Yuichiro Hayashi,Masahiro Oda,Hayato Itoh,Takayuki Kitasaka,Alejandro F. Frangi,Kensaku Mori
出处
期刊:Lecture Notes in Computer Science 卷期号:: 348-356 被引量:25
标识
DOI:10.1007/978-3-030-32226-7_39
摘要

This paper presents a new spatial fully connected tubular network for 3D tubular-structure segmentation. Automatic and complete segmentation of intricate tubular structures remains an unsolved challenge in the medical image analysis. Airways and vasculature pose high demands on medical image analysis as they are elongated fine structures with calibers ranging from several tens of voxels to voxel-level resolution, branching in deeply multi-scale fashion, and with complex topological and spatial relationships. Most machine/deep learning approaches are based on intensity features and ignore spatial consistency across the network that are otherwise distinct in tubular structures. In this work, we introduce 3D slice-by-slice convolutional layers in a U-Net architecture to capture the spatial information of elongated structures. Furthermore, we present a novel loss function, coined radial distance loss, specifically designed for tubular structures. The commonly used methods of cross-entropy loss and generalized Dice loss are sensitive to volumetric variation. However, in tiny tubular structure segmentation, topological errors are as important as volumetric errors. The proposed radial distance loss places higher weight to the centerline, and this weight decreases along the radial direction. Radial distance loss can help networks focus more attention on tiny structures than on thicker tubular structures. We perform experiments on bronchus segmentation on 3D CT images. The experimental results show that compared to the baseline U-Net, our proposed network achieved improvement about 24% and 30% in Dice index and centerline over ratio.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
拼搏宝莹发布了新的文献求助30
3秒前
顾宇完成签到,获得积分20
3秒前
共享精神应助土豆淀粉采纳,获得10
3秒前
大模型应助你好采纳,获得10
4秒前
大鱼关注了科研通微信公众号
4秒前
Hello应助坚强的严青采纳,获得10
4秒前
雪白发卡发布了新的文献求助10
4秒前
grace完成签到 ,获得积分10
4秒前
酷炫的大碗完成签到,获得积分10
5秒前
Strickland发布了新的文献求助10
5秒前
宋宋发布了新的文献求助50
7秒前
8秒前
等待的冰兰完成签到,获得积分10
8秒前
优美的小丸子完成签到,获得积分20
10秒前
12秒前
乐乐乐发布了新的文献求助10
12秒前
风趣的老太应助chen采纳,获得10
12秒前
12秒前
脑洞疼应助CYY采纳,获得10
12秒前
13秒前
传奇3应助澡雪采纳,获得10
13秒前
14秒前
Dobrzs完成签到,获得积分10
14秒前
15秒前
一只冬瓜zZ完成签到,获得积分10
15秒前
轻松的亦寒应助zcvxd采纳,获得20
15秒前
16秒前
16秒前
fst完成签到,获得积分10
17秒前
ping发布了新的文献求助10
18秒前
土豆淀粉发布了新的文献求助10
18秒前
彼岸花发布了新的文献求助10
20秒前
量子星尘发布了新的文献求助10
20秒前
21秒前
21秒前
LHT完成签到,获得积分10
21秒前
tex发布了新的文献求助10
21秒前
22秒前
乐乐乐完成签到,获得积分10
22秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3975816
求助须知:如何正确求助?哪些是违规求助? 3520159
关于积分的说明 11201128
捐赠科研通 3256541
什么是DOI,文献DOI怎么找? 1798347
邀请新用户注册赠送积分活动 877539
科研通“疑难数据库(出版商)”最低求助积分说明 806426