All-Polymeric Pressure Sensors Based on PEDOT:PSS-Modified Polyurethane Foam

材料科学 佩多:嘘 微电子 压力传感器 复合材料 聚氨酯 微观结构 嵌入 传感器 图层(电子) 纳米技术 机械工程 计算机科学 声学 人工智能 工程类 物理
作者
Matteo Beccatelli,Marco Villani,Francesco Gentile,Luigi Bruno,Davide Seletti,Domna Maria Nikolaidou,Maurizio Culiolo,A. Zappettini,Nicola Coppedè
出处
期刊:ACS applied polymer materials [American Chemical Society]
卷期号:3 (3): 1563-1572 被引量:37
标识
DOI:10.1021/acsapm.0c01389
摘要

The ability to produce distributed sensors by tailoring materials readily available on the market is becoming an emerging strategy for Internet of Things applications. Embedding sensors into functional substrates allows one to reduce costs and improve integration and gives unique functionalities inaccessible to silicon or other conventional materials used in microelectronics. In this paper, we demonstrate the functionalization of a commercial polyurethane (PU) foam with the conductive polymer PEDOT:PSS: the resulting material is a modified all-polymeric foam where the internal network of pores is uniformly coated with a continuous layer of PEDOT:PSS acting as a mechanical transducer. When an external force causes a modification of the foam microstructure, the conductivity of the device varies accordingly, enabling the conversion of a mechanical pressure into an electric signal. The sensor provides a nearly linear response when stimulated by an external pressure in the range between 0.1 and 20 kPa. Frequency-dependent measurements show a useful frequency range up to 20 Hz. A simple micromechanical model has been proposed to predict the device performance based on the characteristics of the system, including geometrical constrains, the microstructure of the polymeric foam, and its elastic modulus. By taking advantage of the simulation output, a flexible shoe in sole prototype has been developed by embedding eight pressure sensors into a commercial PU foam. The proposed device may provide critical information to medical teams, such as the real-time bodyweight distribution and a detailed representation of the walking dynamic.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
夏末完成签到,获得积分10
刚刚
1秒前
1秒前
2秒前
4秒前
Nanpasen发布了新的文献求助10
4秒前
骆怀薇完成签到 ,获得积分10
5秒前
Wink14551发布了新的文献求助10
5秒前
hf发布了新的文献求助30
6秒前
zxvcbnm完成签到,获得积分10
6秒前
fanhuam发布了新的文献求助10
6秒前
7秒前
7秒前
8秒前
称心寒松发布了新的文献求助10
9秒前
NexusExplorer应助MHSCS采纳,获得10
9秒前
早上好完成签到,获得积分10
9秒前
阳光向秋发布了新的文献求助10
10秒前
11秒前
柠檬发布了新的文献求助10
13秒前
13秒前
慕青应助121采纳,获得10
13秒前
bbdx发布了新的文献求助10
15秒前
15秒前
17秒前
WYP完成签到 ,获得积分10
17秒前
云天明发布了新的文献求助10
17秒前
诚心的初露完成签到,获得积分10
19秒前
yyyt完成签到,获得积分10
19秒前
秤子发布了新的文献求助10
19秒前
wss关闭了wss文献求助
20秒前
脑洞疼应助叽叽卟卟采纳,获得10
20秒前
善学以致用应助Will采纳,获得10
23秒前
xiaofeiyan发布了新的文献求助10
23秒前
糖果应助wangmomo1983采纳,获得10
24秒前
彩色映雁发布了新的文献求助10
24秒前
大个应助牛牛的我采纳,获得10
26秒前
xixi完成签到,获得积分10
26秒前
zzzz发布了新的文献求助10
26秒前
zy完成签到,获得积分10
28秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3740949
求助须知:如何正确求助?哪些是违规求助? 3283763
关于积分的说明 10036623
捐赠科研通 3000513
什么是DOI,文献DOI怎么找? 1646539
邀请新用户注册赠送积分活动 783771
科研通“疑难数据库(出版商)”最低求助积分说明 750427