Prediction Models in Aneurysmal Subarachnoid Hemorrhage: Forecasting Clinical Outcome With Artificial Intelligence

医学 蛛网膜下腔出血 改良兰金量表 结果(博弈论) 前瞻性队列研究 内科学 机器学习 缺血 缺血性中风 数学 计算机科学 数理经济学
作者
Guido de Jong,René Aquarius,Barof Sanaan,Ronald Bartels,J. André Grotenhuis,Dylan Henssen,Hieronymus D. Boogaarts
出处
期刊:Neurosurgery [Oxford University Press]
卷期号:88 (5): E427-E434 被引量:42
标识
DOI:10.1093/neuros/nyaa581
摘要

Abstract BACKGROUND Predicting outcome after aneurysmal subarachnoid hemorrhage (aSAH) is known to be challenging and complex. Machine learning approaches, of which feedforward artificial neural networks (ffANNs) are the most widely used, could contribute to the patient-specific outcome prediction. OBJECTIVE To investigate the prediction capacity of an ffANN for the patient-specific clinical outcome and the occurrence of delayed cerebral ischemia (DCI) and compare those results with the predictions of 2 internationally used scoring systems. METHODS A prospective database was used to predict (1) death during hospitalization (ie, mortality) (n = 451), (2) unfavorable modified Rankin Scale (mRS) at 6 mo (n = 413), and (3) the occurrence of DCI (n = 362). Additionally, the predictive capacities of the ffANN were compared to those of Subarachnoid Haemorrhage International Trialists (SAHIT) and VASOGRADE to predict clinical outcome and occurrence of DCI. RESULTS The area under the curve (AUC) of the ffANN showed to be 88%, 85%, and 72% for predicting mortality, an unfavorable mRS, and the occurrence of DCI, respectively. Sensitivity/specificity rates of the ffANN for mortality, unfavorable mRS, and the occurrence of DCI were 82%/80%, 94%/80%, and 74%/68%. The ffANN and SAHIT calculator showed similar AUCs for predicting personalized outcome. The presented ffANN and VASOGRADE were found to perform equally with regard to personalized prediction of occurrence of DCI. CONCLUSION The presented ffANN showed equal performance when compared with VASOGRADE and SAHIT scoring systems while using less individual cases. The web interface launched simultaneously with the publication of this manuscript allows for usage of the ffANN-based prediction tool for individual data (https://nutshell-tool.com/).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
CodeCraft应助月兮2013采纳,获得10
刚刚
传奇3应助mushini采纳,获得10
刚刚
Blankcanva完成签到,获得积分10
刚刚
yoyo发布了新的文献求助10
刚刚
义气的亦寒完成签到,获得积分10
刚刚
1秒前
2秒前
兴奋大船发布了新的文献求助10
2秒前
张莹发布了新的文献求助10
2秒前
坦率花生发布了新的文献求助10
2秒前
2秒前
pan完成签到,获得积分10
3秒前
4秒前
5秒前
缘来如风发布了新的文献求助10
5秒前
肖良啊完成签到 ,获得积分10
5秒前
ding应助鱼海寻俞采纳,获得10
6秒前
正直芒果发布了新的文献求助10
6秒前
iNk给iNk的求助进行了留言
6秒前
浩浩大人完成签到,获得积分20
7秒前
7秒前
7秒前
念淰完成签到,获得积分10
7秒前
8秒前
谨慎珊发布了新的文献求助10
9秒前
正直书白发布了新的文献求助10
9秒前
橘子完成签到,获得积分10
9秒前
bkagyin应助科研通管家采纳,获得10
9秒前
852应助科研通管家采纳,获得10
9秒前
科研通AI2S应助科研通管家采纳,获得10
9秒前
Hello应助科研通管家采纳,获得10
10秒前
IBMffff应助科研通管家采纳,获得10
10秒前
10秒前
薛定谔的长颈鹿关注了科研通微信公众号
11秒前
勤劳代亦发布了新的文献求助10
12秒前
hhpku发布了新的文献求助10
12秒前
12秒前
核桃面包发布了新的文献求助30
13秒前
正直芒果完成签到,获得积分10
13秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
A new approach of magnetic circular dichroism to the electronic state analysis of intact photosynthetic pigments 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3148931
求助须知:如何正确求助?哪些是违规求助? 2799908
关于积分的说明 7837731
捐赠科研通 2457479
什么是DOI,文献DOI怎么找? 1307870
科研通“疑难数据库(出版商)”最低求助积分说明 628312
版权声明 601685