Multi-modal evaluation of Alzheimer disease by using joint independent component analysis of functional MRI diffusion tensor imaging

医学 楔前 磁共振弥散成像 相关性 胼胝体 白质 秩相关 独立成分分析 神经科学 认知 磁共振成像 人工智能 病理 心理学 放射科 精神科 机器学习 计算机科学 数学 几何学
作者
Hefen Yu,Li Dong,Kun Yang,Cheng Luo,Dezhong Yao,Ying Han,Wenying Du
出处
期刊:Chinese journal of radiology 卷期号:53 (8): 642-647
标识
DOI:10.3760/cma.j.issn.1005-1201.2019.08.003
摘要

Objective We utilized a joint independent component analysis (Joint ICA), a novel method that combined rs-fMRI and DTI information, to describe comprehensive characteristics of brain functional activities and microstructural changes in the continuum of AD. Methods We employed a Joint ICA to calculate ALFF maps of fMRI data and FA maps of DTI data and fuse them in healthy controls (n=68), SCD (n=35), amnesic MCI (n=47) and AD (n=31). Besides, we applied one way ANOVA to detect the significant differences of joint components among groups, while controlling the age, gender, education, head motion, volumes of gray matter, white matter and CSF. Partial correlation analysis was used to test the relationships between joint ICs and cognitive measures. Results The results showed that there was no inner-group difference in HC and SCD groups (F=14.16, P<0.05). Compared to HC, SCD and AD groups, the ALFF component of aMCI group showed higher values in the bilateral cerebellum, bilateral precuneus, bilateral angular gyrus, bilateral frontal gyrus, bilateral temporal areas, thalamus and left insula. And in these regions, the ALFF of AD group was lower than HC. For the FA component map, same differences were found in the corpus callosum and limbic system. Furthermore, positive partial correlation between the IC weights and Mini-Mental State Examination (MMSE) scores was also found (r=0.29, P<0.01). Conclusions Multi-modal evaluation of AD has been implemented by using Joint ICA analysis of fMRI-DTI, which would contribute to early prediction, diagnosis, and even effective intervention in AD. These findings could help to explain the underlying mechanism of the disease progression. Key words: Alzheimer disease; Magnetic resonance imaging; Diffusion tensor imaging; Joint independent component analysis

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
1秒前
CipherSage应助长雁采纳,获得10
2秒前
忠嗣院学员完成签到,获得积分10
3秒前
lsw发布了新的文献求助10
4秒前
CipherSage应助五月天采纳,获得10
4秒前
FashionBoy应助王明磊采纳,获得10
5秒前
嘿嘿发布了新的文献求助10
5秒前
研友_wZr5Rn发布了新的文献求助10
7秒前
儒雅三问完成签到 ,获得积分10
8秒前
9秒前
量子星尘发布了新的文献求助10
9秒前
tinner完成签到,获得积分10
10秒前
buno发布了新的文献求助10
11秒前
完美世界应助YCleeeee采纳,获得10
11秒前
汉堡包应助YAN采纳,获得10
11秒前
13秒前
量子星尘发布了新的文献求助10
13秒前
15秒前
桐桐应助3号球衣采纳,获得10
16秒前
16秒前
CCTwoo完成签到,获得积分10
18秒前
挽晨完成签到 ,获得积分10
18秒前
酷波er应助ZKai采纳,获得10
18秒前
关中人完成签到,获得积分10
18秒前
zf2023发布了新的文献求助30
19秒前
可爱的函函应助牛牛采纳,获得10
19秒前
21秒前
23秒前
25秒前
26秒前
慕青应助whytcs采纳,获得10
26秒前
26秒前
东都哈士奇完成签到,获得积分10
26秒前
一叶知秋完成签到,获得积分10
27秒前
27秒前
LYF000666发布了新的文献求助10
27秒前
量子星尘发布了新的文献求助10
28秒前
量子星尘发布了新的文献求助10
28秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 25000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5705070
求助须知:如何正确求助?哪些是违规求助? 5160498
关于积分的说明 15243798
捐赠科研通 4858886
什么是DOI,文献DOI怎么找? 2607466
邀请新用户注册赠送积分活动 1558571
关于科研通互助平台的介绍 1516188