Using Predictive Modeling and Machine Learning to Identify Patients Appropriate for Outpatient Anterior Cervical Fusion and Discectomy

医学 颈椎前路椎间盘切除融合术 逻辑回归 回廊的 假关节 回顾性队列研究 并发症 外科 急诊医学 内科学 颈椎
作者
Kevin Y. Wang,Krishna V. Suresh,Varun Puvanesarajah,Micheal Raad,Adam Margalit,Amit Jain
出处
期刊:Spine [Ovid Technologies (Wolters Kluwer)]
卷期号:46 (10): 665-670 被引量:23
标识
DOI:10.1097/brs.0000000000003865
摘要

Study Design. Retrospective, case–control. Objective. The aim of this study was to use predictive modeling and machine learning to develop novel tools for identifying patients who may be appropriate for single-level outpatient anterior cervical fusion and discectomy (ACDF), and to compare these to legacy metrics. Summary of Background Data. ACDF performed in an ambulatory surgical setting has started to gain popularity in recent years. Currently there are no standardized risk-stratification tools for determining which patients may be safe candidates for outpatient ACDF. Methods. Adult patients with American Society of Anesthesiologists (ASA) Class 1, 2, or 3 undergoing one-level ACDF in inpatient or outpatient settings were identified in the National Surgical Quality Improvement Program database. Patients were deemed as “unsafe” for outpatient surgery if they suffered any complication within a week of the index operation. Two different methodologies were used to identify unsafe candidates: a novel predictive model derived from multivariable logistic regression of significant risk factors, and an artificial neural network (ANN) using preoperative variables. Both methods were trained using randomly split 70% of the dataset and validated on the remaining 30%. The methods were compared against legacy risk-stratification measures: ASA and Charlson Comorbidity Index (CCI) using area under the curve (AUC) statistic. Results. A total of 12,492 patients who underwent single-level ACDF met the study criteria. Of these, 9.79% (1223) were deemed unsafe for outpatient ACDF given development of a complication within 1 week of the index operation. The five clinical variables that were found to be significant in the multivariable predictive model were: advanced age, low hemoglobin, high international normalized ratio, low albumin, and poor functional status. The predictive model had an AUC of 0.757, which was significantly higher than the AUC of both ASA (0.66; P < 0.001) and CCI (0.60; P < 0.001). The ANN exhibited an AUC of 0.740, which was significantly higher than the AUCs of ASA and CCI (all, P < 0.05), and comparable to that of the predictive model ( P > 0.05). Conclusion. Predictive analytics and machine learning can be leveraged to aid in identification of patients who may be safe candidates for single-level outpatient ACDF. Surgeons and perioperative teams may find these tools useful to augment clinical decision-making. Level of Evidence: 3
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
隐形曼青应助北国蓝莓酒采纳,获得10
3秒前
阿边发布了新的文献求助10
5秒前
ajun发布了新的文献求助10
5秒前
生动的大地完成签到,获得积分10
6秒前
糖果发布了新的文献求助10
6秒前
JamesPei应助咕噜咕噜采纳,获得10
7秒前
潇洒行天完成签到,获得积分10
11秒前
奋斗夏旋完成签到,获得积分10
13秒前
英姑应助花花花花采纳,获得10
15秒前
菠萝菠萝哒应助choyee采纳,获得10
16秒前
薛洁洁的小糖完成签到,获得积分10
21秒前
21秒前
cindy完成签到 ,获得积分10
21秒前
23秒前
追寻羿完成签到 ,获得积分10
23秒前
25秒前
26秒前
CodeCraft应助tanglu采纳,获得10
27秒前
29秒前
riotzoov发布了新的文献求助10
29秒前
聋哑时代发布了新的文献求助10
29秒前
高翔发布了新的文献求助10
32秒前
32秒前
飞云发布了新的文献求助10
33秒前
愉快之槐完成签到,获得积分10
34秒前
好一夜的无声雨完成签到,获得积分20
34秒前
林大侠完成签到,获得积分10
38秒前
标致小甜瓜完成签到,获得积分10
39秒前
桐桐应助riotzoov采纳,获得10
40秒前
41秒前
汉堡包应助san行采纳,获得10
44秒前
45秒前
无花果应助清新的静枫采纳,获得10
45秒前
cdu应助飞云采纳,获得30
46秒前
46秒前
竹筏过海应助PPFF采纳,获得30
47秒前
47秒前
糖果发布了新的文献求助10
49秒前
xxxxx完成签到,获得积分20
51秒前
幽默以晴发布了新的文献求助10
51秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
지식생태학: 생태학, 죽은 지식을 깨우다 600
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3461273
求助须知:如何正确求助?哪些是违规求助? 3054977
关于积分的说明 9045885
捐赠科研通 2744911
什么是DOI,文献DOI怎么找? 1505727
科研通“疑难数据库(出版商)”最低求助积分说明 695812
邀请新用户注册赠送积分活动 695233