亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

The Ways of Actin: Why Tunneling Nanotubes Are Unique Cell Protrusions

肌动蛋白 生物 细胞生物学 生物物理学
作者
Nina Ljubojević,J. Michael Henderson,Chiara Zurzolo
出处
期刊:Trends in Cell Biology [Elsevier BV]
卷期号:31 (2): 130-142 被引量:116
标识
DOI:10.1016/j.tcb.2020.11.008
摘要

Novel structures, known as tunneling nanotubes (TNTs), are membranous protrusions supported by filamentous actin that mediate continuity between remote cells by remaining open at both ends for cargo transport. The formation of morphologically similar protrusions, such as filopodia, microvilli, and immature dendritic spines, involves the processes of initiation, elongation, and stabilization; this includes many actin and membrane regulators, such as Rho GTPases, I-BAR proteins, actin nucleators, and actin bundlers, which likely participate in TNT formation. The unique length of TNTs implies the involvement of motor proteins able to efficiently transport the required components to the growing end, and likely a specific actin arrangement. Specificity in TNT biogenesis may arise from differences in the ability of common actin-regulating molecules to promote TNTs versus filopodia. Actin remodeling is at the heart of the response of cells to external or internal stimuli, allowing a variety of membrane protrusions to form. Fifteen years ago, tunneling nanotubes (TNTs) were identified, bringing a novel addition to the family of actin-supported cellular protrusions. Their unique property as conduits for cargo transfer between distant cells emphasizes the unique nature of TNTs among other protrusions. While TNTs in different pathological and physiological scenarios have been described, the molecular basis of how TNTs form is not well understood. In this review, we discuss the role of several actin regulators in the formation of TNTs and suggest potential players based on their comparison with other actin-based protrusions. New perspectives for discovering a distinct TNT formation pathway would enable us to target them in treating the increasing number of TNT-involved pathologies. Actin remodeling is at the heart of the response of cells to external or internal stimuli, allowing a variety of membrane protrusions to form. Fifteen years ago, tunneling nanotubes (TNTs) were identified, bringing a novel addition to the family of actin-supported cellular protrusions. Their unique property as conduits for cargo transfer between distant cells emphasizes the unique nature of TNTs among other protrusions. While TNTs in different pathological and physiological scenarios have been described, the molecular basis of how TNTs form is not well understood. In this review, we discuss the role of several actin regulators in the formation of TNTs and suggest potential players based on their comparison with other actin-based protrusions. New perspectives for discovering a distinct TNT formation pathway would enable us to target them in treating the increasing number of TNT-involved pathologies. family of regulatory molecules that bind phosphorylated serine/threonine motifs to protect phosphorylated residues from phosphatases, block downstream protein binding, and provide a scaffold for promoting direct protein–protein interactions, for example. a serine/threonine-specific enzyme highly expressed in the brain that mediates synaptic structures through binding and bundling of F-actin, and by sequestering G-actin. member of the actin depolymerizing factor (ADF) family that disassembles actin filaments at their pointed end through severing. long (up to 700 μm) actin-based extensions that specifically allow for direct protein–protein interactions involved in growth factor and morphogen signaling over long distances. neuronal protrusions emerging from dendrites that receive excitatory inputs from axons. Immature ‘dendritic filopodia’ adopt the characteristic mushroom shape of the mature spine that is supported by branched actin. an eight-subunit complex involved in vesicle trafficking, where it facilitates the tethering of vesicles to the plasma membrane for exocytosis before membrane fusion. a module originally identified in the four-point one/ezrin/radixin/moesin protein family that mediates plasma membrane binding by interacting with phosphatidylinositol (4,5) bisphosphate lipids. a family of actin-binding proteins that crosslink actin filaments into orthogonal networks. dynamic, closed-ended finger-like protrusions containing parallel bundles of F-actin reaching typical lengths of the order of 1−5 μm. They can be found on the dorsal side of cultured cells, but more commonly they are observed attached to the substrate. also known as Tumor necrosis factor alpha-induced protein 2 (TNFAIP2); acts as a platform that connects RalA (a Ral GTPase subfamily member) and the exocyst complex. epithelial protrusions on the order of 1–2 μm in length that form a dense array known as the ‘brush border.’ Similar to filopodia, they contain a core of bundled actin filaments. motor protein family that bind actin and move along actin filaments. Conventional class II myosins form microfilaments and produce contractile forces, while non-class II myosins comprise notable motors for organelle transport (e.g., Myosin-V and Myosin-X). actin filaments are polarized [i.e., have different ends, referred to as the barbed (i.e., plus) and pointed (i.e., minus) end]. Actin monomers preferentially incorporate at the barbed end, while filament disassembly occurs preferentially at the pointed end. In protrusions, the barbed end is oriented towards the plasma membrane, such that polymerization can help outward growth of the protrusion. an adapter module that mediates the assembly of multiprotein complexes by recognizing short PXXP peptide motifs (P, proline; X, any amino acid) that adopt a polyproline type II helix. membrane protrusions forming networks between cancer cells. TMs are thicker than TNTs and contain microtubules in addition to actin . They are close-ended protrusions with gap junction channels at their ends that permit intercellular transfer of electrical signals and small molecules.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
卡皮巴拉完成签到,获得积分10
刚刚
2秒前
5秒前
科研通AI6应助luxiao采纳,获得10
7秒前
song发布了新的文献求助10
9秒前
专注的安青完成签到 ,获得积分10
10秒前
16秒前
MTF完成签到 ,获得积分10
19秒前
李健应助科研通管家采纳,获得10
23秒前
科研通AI5应助科研通管家采纳,获得10
23秒前
小蘑菇应助科研通管家采纳,获得10
23秒前
科目三应助科研通管家采纳,获得10
23秒前
24秒前
24秒前
31秒前
LYL完成签到,获得积分10
31秒前
halo完成签到 ,获得积分10
32秒前
LYL发布了新的文献求助10
37秒前
39秒前
45秒前
47秒前
xxi发布了新的文献求助10
49秒前
ywzwszl完成签到,获得积分0
49秒前
51秒前
51秒前
英俊的铭应助xxi采纳,获得10
54秒前
彭于晏应助xxi采纳,获得10
54秒前
hhhhh发布了新的文献求助10
56秒前
量子星尘发布了新的文献求助10
56秒前
58秒前
irenechen发布了新的文献求助10
1分钟前
1分钟前
今后应助irenechen采纳,获得10
1分钟前
米线儿完成签到,获得积分10
1分钟前
许三问完成签到 ,获得积分0
1分钟前
1分钟前
song完成签到 ,获得积分10
1分钟前
呆萌念云完成签到 ,获得积分10
1分钟前
然463完成签到 ,获得积分10
1分钟前
woobinhua完成签到 ,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
网络安全 SEMI 标准 ( SEMI E187, SEMI E188 and SEMI E191.) 1000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Two New β-Class Milbemycins from Streptomyces bingchenggensis: Fermentation, Isolation, Structure Elucidation and Biological Properties 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4610716
求助须知:如何正确求助?哪些是违规求助? 4016529
关于积分的说明 12435439
捐赠科研通 3698187
什么是DOI,文献DOI怎么找? 2039308
邀请新用户注册赠送积分活动 1072161
科研通“疑难数据库(出版商)”最低求助积分说明 955832