金属有机骨架
质子
导电体
化学
表征(材料科学)
机制(生物学)
中子散射
结晶度
电导率
热传导
化学物理
纳米技术
吸附
材料科学
中子
物理化学
物理
结晶学
核物理学
复合材料
量子力学
作者
Dae‐Woon Lim,Hiroshi Kitagawa
出处
期刊:Chemical Reviews
[American Chemical Society]
日期:2020-05-14
卷期号:120 (16): 8416-8467
被引量:423
标识
DOI:10.1021/acs.chemrev.9b00842
摘要
Solid-state proton conductors (SSPCs), which are a key component for the safety and efficiency of fuel cells, have received much attention due to their broad application in electrochemical devices. In particular, the development of new materials with high conducting performance and an understanding of the conduction mechanism have become critical issues in this field. Porous metal-organic frameworks (MOFs) or porous coordination polymers (PCPs) have recently emerged and have been extensively studied as a new type of proton conductor due to their crystallinity, designability, and high porosity. These properties are able to adsorb the guest molecules working as conducting media. During the past decade, major advances in proton-conductive MOFs have been achieved with high performance (>10-2 S cm-1), comparable to the conventional material, via various synthetic strategies, and the veiled conduction mechanism has been elucidated through structure analysis and spectroscopy tools such as NMR, X-ray diffraction, and neutron scattering measurement. This Review aims to summarize and provide a comprehensive understanding of proton transport in MOFs. Here, we discuss the fundamental principles and various design strategies and implementations aimed at enhancing proton conductivity with representative examples. We also deal with characterization methods used to investigate proton-conductive MOFs and computational/theoretical studies that aid in understanding the conduction mechanism. Finally, future endeavors are suggested regarding the challenges of research for practical SSPCs.
科研通智能强力驱动
Strongly Powered by AbleSci AI