Real-Time State-of-Health Estimation of Lithium-Ion Batteries Based on the Equivalent Internal Resistance

不可用 健康状况 内阻 计算机科学 电池(电) 稳健性(进化) 荷电状态 支持向量机 功率(物理) 可靠性工程 工程类 人工智能 化学 基因 量子力学 物理 生物化学
作者
Xiaojun Tan,Yuqing Tan,Di Zhan,Ze Yu,Yuqian Fan,Jianzhi Qiu,Jun Li
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:8: 56811-56822 被引量:58
标识
DOI:10.1109/access.2020.2979570
摘要

Real-time state-of-health (SoH) estimation is often difficult to obtain due to the unavailability of capacity measurements in real-time monitoring. The equivalent internal resistance (EIR), which is easily obtained and closely related to battery deterioration, is studied as a possible solution for achieving real-time and reliable SoH estimation for lithium-ion batteries. A novel real-time SoH estimation method based on the EIR is introduced for lithium-ion batteries. First, an experimental study of the relationship between the EIR and battery degradation is implemented, and this study is used to develop an empirical description of battery degradation using the EIR vector. Second, a fast extraction method for identifying the EIR in real time is proposed by leveraging the relationship between the EIR vector and state of charge (SoC). Third, a support vector regression (SVR)-based method for real-time SoH estimation is introduced by characterizing the hidden relationship between the EIR vector and battery SoH. The proposed method is demonstrated using laboratory test data. The results show that the proposed method can predict the battery SoH in real time with good accuracy and robustness.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yhtu完成签到,获得积分10
刚刚
光速2000完成签到,获得积分10
刚刚
宁1完成签到,获得积分10
1秒前
2秒前
落后的寻凝完成签到,获得积分10
2秒前
cenzy完成签到 ,获得积分10
2秒前
脑洞疼应助越野蟹采纳,获得10
2秒前
Happyness完成签到,获得积分10
3秒前
伍六七完成签到,获得积分10
3秒前
4秒前
4秒前
潇洒若菱完成签到,获得积分10
5秒前
科研通AI5应助Nancy采纳,获得10
5秒前
5秒前
6秒前
大橘一号发布了新的文献求助30
7秒前
小林神完成签到,获得积分10
7秒前
隐形曼青应助大成子采纳,获得10
7秒前
严西完成签到,获得积分10
8秒前
8秒前
Bryan应助domingo采纳,获得10
10秒前
10秒前
BananaSlayer完成签到,获得积分10
11秒前
闾丘剑封发布了新的文献求助10
11秒前
baobao完成签到,获得积分10
12秒前
平常的毛豆应助haralee采纳,获得10
12秒前
13秒前
fzzf发布了新的文献求助10
15秒前
小趴菜完成签到,获得积分10
16秒前
苏世誉完成签到,获得积分10
17秒前
18秒前
19秒前
19秒前
想抱完成签到,获得积分10
20秒前
子訡完成签到 ,获得积分10
20秒前
20秒前
Happyness应助Nancy采纳,获得10
21秒前
平常的毛豆应助haralee采纳,获得10
22秒前
CodeCraft应助问问问采纳,获得10
22秒前
Pursuit完成签到,获得积分10
22秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3991160
求助须知:如何正确求助?哪些是违规求助? 3532403
关于积分的说明 11257383
捐赠科研通 3271375
什么是DOI,文献DOI怎么找? 1805404
邀请新用户注册赠送积分活动 882386
科研通“疑难数据库(出版商)”最低求助积分说明 809292