Real-Time State-of-Health Estimation of Lithium-Ion Batteries Based on the Equivalent Internal Resistance

不可用 健康状况 内阻 计算机科学 电池(电) 稳健性(进化) 荷电状态 支持向量机 功率(物理) 可靠性工程 工程类 人工智能 化学 基因 量子力学 物理 生物化学
作者
Xiaojun Tan,Yuqing Tan,Di Zhan,Ze Yu,Yuqian Fan,Jianzhi Qiu,Jun Li
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:8: 56811-56822 被引量:58
标识
DOI:10.1109/access.2020.2979570
摘要

Real-time state-of-health (SoH) estimation is often difficult to obtain due to the unavailability of capacity measurements in real-time monitoring. The equivalent internal resistance (EIR), which is easily obtained and closely related to battery deterioration, is studied as a possible solution for achieving real-time and reliable SoH estimation for lithium-ion batteries. A novel real-time SoH estimation method based on the EIR is introduced for lithium-ion batteries. First, an experimental study of the relationship between the EIR and battery degradation is implemented, and this study is used to develop an empirical description of battery degradation using the EIR vector. Second, a fast extraction method for identifying the EIR in real time is proposed by leveraging the relationship between the EIR vector and state of charge (SoC). Third, a support vector regression (SVR)-based method for real-time SoH estimation is introduced by characterizing the hidden relationship between the EIR vector and battery SoH. The proposed method is demonstrated using laboratory test data. The results show that the proposed method can predict the battery SoH in real time with good accuracy and robustness.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
dagongren完成签到,获得积分10
2秒前
传奇3应助吴念采纳,获得10
2秒前
3秒前
4秒前
科研通AI5应助袁衣采纳,获得30
4秒前
小赵完成签到,获得积分10
5秒前
丁二发布了新的文献求助10
5秒前
巨人的背影完成签到,获得积分10
5秒前
萌酱完成签到,获得积分10
6秒前
蝼蚁王完成签到 ,获得积分10
6秒前
6秒前
7秒前
7秒前
缓慢手机完成签到,获得积分10
7秒前
内向映天完成签到 ,获得积分10
8秒前
传奇3应助WangXuerong采纳,获得10
8秒前
小吴关注了科研通微信公众号
8秒前
9秒前
量子星尘发布了新的文献求助10
10秒前
11秒前
11秒前
silence63发布了新的文献求助10
12秒前
smujj发布了新的文献求助10
12秒前
dsdingding发布了新的文献求助10
13秒前
呆呆是一条鱼完成签到,获得积分10
13秒前
饼饼完成签到,获得积分10
15秒前
15秒前
15秒前
16秒前
你再说一遍完成签到,获得积分10
17秒前
17秒前
17秒前
17秒前
18秒前
Hello应助Sy采纳,获得10
18秒前
cloudb完成签到,获得积分10
19秒前
smujj完成签到,获得积分20
20秒前
温言叮叮铛完成签到,获得积分10
20秒前
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5069191
求助须知:如何正确求助?哪些是违规求助? 4290611
关于积分的说明 13368297
捐赠科研通 4110680
什么是DOI,文献DOI怎么找? 2251050
邀请新用户注册赠送积分活动 1256268
关于科研通互助平台的介绍 1188741