Adversarial Joint-Learning Recurrent Neural Network for Incomplete Time Series Classification

计算机科学 插补(统计学) 缺少数据 循环神经网络 人工智能 机器学习 Boosting(机器学习) 时间序列 对抗制 数据挖掘 人工神经网络 模式识别(心理学)
作者
Qianli Ma,Sen Li,Garrison W. Cottrell
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [IEEE Computer Society]
卷期号:44 (4): 1765-1776 被引量:48
标识
DOI:10.1109/tpami.2020.3027975
摘要

Incomplete time series classification (ITSC) is an important issue in time series analysis since temporal data often has missing values in practical applications. However, integrating imputation (replacing missing data) and classification within a model often rapidly amplifies the error from imputed values. Reducing this error propagation from imputation to classification remains a challenge. To this end, we propose an adversarial joint-learning recurrent neural network (AJ-RNN) for ITSC, an end-to-end model trained in an adversarial and joint learning manner. We train the system to categorize the time series as well as impute missing values. To alleviate the error introduced by each imputation value, we use an adversarial network to encourage the network to impute realistic missing values by distinguishing real and imputed values. Hence, AJ-RNN can directly perform classification with missing values and greatly reduce the error propagation from imputation to classification, boosting the accuracy. Extensive experiments on 68 synthetic datasets and 4 real-world datasets from the expanded UCR time series archive demonstrate that AJ-RNN achieves state-of-the-art performance. Furthermore, we show that our model can effectively alleviate the accumulating error problem through qualitative and quantitative analysis based on the trajectory of the dynamical system learned by the RNN. We also provide an analysis of the model behavior to verify the effectiveness of our approach.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
谦让寻绿发布了新的文献求助10
刚刚
传奇3应助Odyssey_Cheung采纳,获得10
1秒前
2秒前
雄鹰发布了新的文献求助10
2秒前
村口的王桂芳完成签到,获得积分10
2秒前
2秒前
3秒前
寂寞的小乌龟完成签到,获得积分10
4秒前
4秒前
Jiangnj发布了新的文献求助10
5秒前
hzy发布了新的文献求助10
6秒前
淡淡的豁应助Vincent采纳,获得30
6秒前
6秒前
wwk关注了科研通微信公众号
6秒前
学术天后完成签到,获得积分10
8秒前
陈某某发布了新的文献求助10
8秒前
田様应助大傻春采纳,获得10
9秒前
爆米花应助Jiangnj采纳,获得10
10秒前
12秒前
酷波er应助QYPANG采纳,获得10
12秒前
超帅彩虹完成签到 ,获得积分10
15秒前
orixero应助BeBrave1028采纳,获得10
15秒前
hzy完成签到,获得积分10
15秒前
nazi完成签到,获得积分10
15秒前
罗中翠完成签到,获得积分10
16秒前
落后千雁完成签到,获得积分10
16秒前
17秒前
dypdyp应助一米八亖小朋友采纳,获得10
18秒前
18秒前
19秒前
科研通AI2S应助啊嚯采纳,获得10
20秒前
辉辉发布了新的文献求助10
22秒前
匿名网友完成签到 ,获得积分10
22秒前
22秒前
魔幻含芙完成签到,获得积分20
22秒前
23秒前
24秒前
搜集达人应助chang采纳,获得10
25秒前
魔幻含芙发布了新的文献求助30
26秒前
min完成签到,获得积分20
27秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
Christian Women in Chinese Society: The Anglican Story 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962070
求助须知:如何正确求助?哪些是违规求助? 3508372
关于积分的说明 11140413
捐赠科研通 3240967
什么是DOI,文献DOI怎么找? 1791157
邀请新用户注册赠送积分活动 872793
科研通“疑难数据库(出版商)”最低求助积分说明 803371