Adversarial Joint-Learning Recurrent Neural Network for Incomplete Time Series Classification

计算机科学 插补(统计学) 缺少数据 循环神经网络 人工智能 机器学习 Boosting(机器学习) 时间序列 对抗制 数据挖掘 人工神经网络 模式识别(心理学)
作者
Qianli Ma,Sen Li,Garrison W. Cottrell
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:44 (4): 1765-1776 被引量:48
标识
DOI:10.1109/tpami.2020.3027975
摘要

Incomplete time series classification (ITSC) is an important issue in time series analysis since temporal data often has missing values in practical applications. However, integrating imputation (replacing missing data) and classification within a model often rapidly amplifies the error from imputed values. Reducing this error propagation from imputation to classification remains a challenge. To this end, we propose an adversarial joint-learning recurrent neural network (AJ-RNN) for ITSC, an end-to-end model trained in an adversarial and joint learning manner. We train the system to categorize the time series as well as impute missing values. To alleviate the error introduced by each imputation value, we use an adversarial network to encourage the network to impute realistic missing values by distinguishing real and imputed values. Hence, AJ-RNN can directly perform classification with missing values and greatly reduce the error propagation from imputation to classification, boosting the accuracy. Extensive experiments on 68 synthetic datasets and 4 real-world datasets from the expanded UCR time series archive demonstrate that AJ-RNN achieves state-of-the-art performance. Furthermore, we show that our model can effectively alleviate the accumulating error problem through qualitative and quantitative analysis based on the trajectory of the dynamical system learned by the RNN. We also provide an analysis of the model behavior to verify the effectiveness of our approach.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xixi发布了新的文献求助10
刚刚
冰点发布了新的文献求助10
刚刚
1秒前
烟花应助Adzuki0812采纳,获得10
2秒前
3秒前
霸气鞯发布了新的文献求助10
3秒前
123321321345完成签到,获得积分10
4秒前
务实的蛋挞完成签到,获得积分20
5秒前
5秒前
wl17865313955发布了新的文献求助10
6秒前
Catherine_Song完成签到 ,获得积分10
7秒前
冰点完成签到,获得积分10
9秒前
9秒前
10秒前
10秒前
结实乐荷完成签到,获得积分20
11秒前
zhw297发布了新的文献求助10
12秒前
13秒前
13秒前
13秒前
14秒前
durance完成签到,获得积分10
16秒前
酷波er应助春亦晚采纳,获得10
16秒前
16秒前
17秒前
kiteWYL完成签到,获得积分10
17秒前
贪玩的小蜜蜂完成签到,获得积分10
18秒前
小蘑菇应助xixi采纳,获得10
18秒前
18秒前
Zhua子完成签到,获得积分10
18秒前
18秒前
jovrtic发布了新的文献求助10
18秒前
英姑应助聪慧仇天采纳,获得10
19秒前
19秒前
鲜艳的梦柏完成签到,获得积分10
20秒前
Adzuki0812发布了新的文献求助10
21秒前
9089090发布了新的文献求助10
21秒前
打打应助罗氏集团采纳,获得10
21秒前
22秒前
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5548123
求助须知:如何正确求助?哪些是违规求助? 4633417
关于积分的说明 14631222
捐赠科研通 4575059
什么是DOI,文献DOI怎么找? 2508825
邀请新用户注册赠送积分活动 1485072
关于科研通互助平台的介绍 1456096