已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Few-Shot Relation Learning with Attention for EEG-based Motor Imagery Classification

计算机科学 运动表象 人工智能 脑电图 脑-机接口 模式识别(心理学) 机器学习 分类器(UML) 特征提取 心理学 精神科
作者
Sion An,Soopil Kim,Philip Chikontwe,Sang Hyun Park
标识
DOI:10.1109/iros45743.2020.9340933
摘要

Brain-Computer Interfaces (BCI) based on Electroencephalography (EEG) signals, in particular motor imagery (MI) data have received a lot of attention and show the potential towards the design of key technologies both in healthcare and other industries. MI data is generated when a subject imagines movement of limbs and can be used to aid rehabilitation as well as in autonomous driving scenarios. Thus, classification of MI signals is vital for EEG-based BCI systems. Recently, MI EEG classification techniques using deep learning have shown improved performance over conventional techniques. However, due to inter-subject variability, the scarcity of unseen subject data, and low signal-to-noise ratio, extracting robust features and improving accuracy is still challenging. In this context, we propose a novel two-way few shot network that is able to efficiently learn how to learn representative features of unseen subject categories and how to classify them with limited MI EEG data. The pipeline includes an embedding module that learns feature representations from a set of samples, an attention mechanism for key signal feature discovery, and a relation module for final classification based on relation scores between a support set and a query signal. In addition to the unified learning of feature similarity and a few shot classifier, our method leads to emphasize informative features in support data relevant to the query data, which generalizes better on unseen subjects. For evaluation, we used the BCI competition IV 2b dataset and achieved an 9.3% accuracy improvement in the 20-shot classification task with state-of-the-art performance. Experimental results demonstrate the effectiveness of employing attention and the overall generality of our method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
511完成签到 ,获得积分10
1秒前
缓慢的初南完成签到,获得积分20
6秒前
领导范儿应助木深采纳,获得10
7秒前
Hobby完成签到,获得积分0
8秒前
阳光完成签到,获得积分10
9秒前
daydayup完成签到,获得积分10
10秒前
研友_ZbM2qn应助mbf采纳,获得30
12秒前
陈塘关守将完成签到,获得积分10
15秒前
小曹在医院上晚班完成签到,获得积分10
16秒前
程小柒完成签到 ,获得积分10
21秒前
22秒前
清风完成签到 ,获得积分10
22秒前
22秒前
虚幻豌豆发布了新的文献求助10
23秒前
阿鑫完成签到 ,获得积分10
24秒前
王天天完成签到 ,获得积分10
24秒前
六六完成签到,获得积分10
25秒前
26秒前
28秒前
29秒前
29秒前
代扁扁完成签到 ,获得积分10
31秒前
852应助mmmwwwx采纳,获得10
32秒前
六六发布了新的文献求助10
33秒前
youngyang完成签到 ,获得积分10
34秒前
木深发布了新的文献求助10
34秒前
吕lvlvlvlvlv完成签到 ,获得积分10
35秒前
子春完成签到 ,获得积分10
35秒前
8R60d8应助lulu采纳,获得10
36秒前
照桥心美完成签到,获得积分10
42秒前
小蘑菇应助Nana采纳,获得10
44秒前
年轻冰萍完成签到,获得积分10
44秒前
照桥心美发布了新的文献求助10
47秒前
47秒前
妮妮完成签到,获得积分10
48秒前
48秒前
49秒前
范白容完成签到 ,获得积分10
49秒前
yizhilaohuli完成签到,获得积分10
50秒前
Persist6578完成签到 ,获得积分10
50秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3307263
求助须知:如何正确求助?哪些是违规求助? 2940973
关于积分的说明 8499935
捐赠科研通 2615205
什么是DOI,文献DOI怎么找? 1428778
科研通“疑难数据库(出版商)”最低求助积分说明 663525
邀请新用户注册赠送积分活动 648382