摘要
Journal of Tissue Engineering and Regenerative MedicineVolume 7, Issue 1 p. 39-50 Research Article Fluorescent labeling of chitosan for use in non-invasive monitoring of degradation in tissue engineering Cassilda Cunha-Reis, Cassilda Cunha-Reis Institute for Science and Technology in Medicine, School of Medicine, Keele University, Stoke-on-Trent, ST4 7QB UKSearch for more papers by this authorAlicia J. El Haj, Corresponding Author Alicia J. El Haj Institute for Science and Technology in Medicine, School of Medicine, Keele University, Stoke-on-Trent, ST4 7QB UKProfessor Alicia J. El Haj, Institute for Science and Technology in Medicine, School of Medicine, Keele University, Thornburrow Drive, Hartshill, Stoke-on-Trent, ST4 7QB, UK. E-mail: [email protected]Search for more papers by this authorXuebin Yang, Xuebin Yang Department of Oral biology, University of Leeds, Leeds, LS2 9 LU UKSearch for more papers by this authorYing Yang, Ying Yang Institute for Science and Technology in Medicine, School of Medicine, Keele University, Stoke-on-Trent, ST4 7QB UKSearch for more papers by this author Cassilda Cunha-Reis, Cassilda Cunha-Reis Institute for Science and Technology in Medicine, School of Medicine, Keele University, Stoke-on-Trent, ST4 7QB UKSearch for more papers by this authorAlicia J. El Haj, Corresponding Author Alicia J. El Haj Institute for Science and Technology in Medicine, School of Medicine, Keele University, Stoke-on-Trent, ST4 7QB UKProfessor Alicia J. El Haj, Institute for Science and Technology in Medicine, School of Medicine, Keele University, Thornburrow Drive, Hartshill, Stoke-on-Trent, ST4 7QB, UK. E-mail: [email protected]Search for more papers by this authorXuebin Yang, Xuebin Yang Department of Oral biology, University of Leeds, Leeds, LS2 9 LU UKSearch for more papers by this authorYing Yang, Ying Yang Institute for Science and Technology in Medicine, School of Medicine, Keele University, Stoke-on-Trent, ST4 7QB UKSearch for more papers by this author First published: 28 November 2011 https://doi.org/10.1002/term.494Citations: 34Read the full textAboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Abstract The establishment of non-invasive analytical tools for assessing the in-situ use of biomaterials for surgical implants or scaffolds in tissue engineering and polymer-based therapies is fundamental. This study established a method for fluorescent tracking of the degradation of a chitosan membrane scaffold for use in vitro in bioreactors and ultimately in vivo. The basis of this tracking system is a fluorescence emitting biomaterial obtained by covalent binding of the fluorophore tetramethylrhodamine isothiocyanate (TRITC) onto the backbone of chitosan. Using confocal microscopy, this study quantitated the reductions in fluorescence intensity of the membrane and correlated these decreases with weight loss during polymer breakdown, thereby providing a technique for non-destructively assessing the extent of degradation of chitosan materials over time in vitro. Using multispectral imaging in a mouse model, the study assessed the degradation profile of the fluorophore-labeled biomaterial in vivo in real time and identified the dispersing pathway of the chitosan membrane degradation products in vivo. The results revealed that TRITC conjugated chitosan was biocompatible and supported bone cell growth. The changes in fluorescence intensity correlated well with weight loss up to 16 weeks of in vitro culture and could be monitored over two weeks in vivo. Copyright © 2011 John Wiley & Sons, Ltd. References Agnihotri SA, Kulkarni VD, Kulkarni AR, et al. 2006; Degradation of chitosan and chemically modified chitosan by viscosity measurements. J Appl Polym Sci 102: 3255– 3258. Bingaman S, Huxley VH, Rumbaut RE. 2003; Fluorescent dyes modify properties of proteins used in microvascular research. Microcirculation 10: 221– 231. Bohmer RM, Scharf E, Assoian RK. 1996; Cytoskeletal integrity is required throughout the mitogen stimulation phase of the cell cycle and mediates the anchorage-dependent expression of cyclin D1. Mol Biol Cell 7: 101– 111. Boucard N, Viton C, Agay D, et al. 2007; The use of physical hydrogels of chitosan for skin regeneration following third-degree burns. Biomaterials 28: 3478– 3488. Capek M, Janacek J, Kubinova L. 2006; Methods for compensation of the light attenuation with depth of images captured by a confocal microscope. Microsc Res Tech 69: 624– 635. Cesaro SN. 1998; FTIR study of a silver-thiourea complex generated in argon and nitrogen cryogenic matrices. Vib Spectrosc 16: 5. Cho H, An J. 2006; The effect of epsilon-caproyl/D,L-lactyl unit composition on the hydrolytic degradation of poly(D,L-lactide-ran-epsilon-caprolactone)-poly(ethylene glycol)-poly(D,L-lactide-ran-epsilon-caprolactone). Biomaterials 27: 544– 552. Dhanasingh S, Nallaperumal SK. 2010; Chitosan/Casein Microparticles: Preparation, Characterization and Drug Release Studies. International Journal of Engineering and Applied Sciences 6: 5– 11. Dunn KW, Mayor S, Myers JN, et al. 1994; Applications of ratio fluorescence microscopy in the study of cell physiology. FASEB J 8: 573– 582. Feng J, Zhao L, Yu Q. 2004; Receptor-mediated stimulatory effect of oligochitosan in macrophages. Biochem Biophys Res Commun 317: 414– 420. Freier T, Koh HS, Kazazian K, et al. 2005; Controlling cell adhesion and degradation of chitosan films by N-acetylation. Biomaterials 26: 5872– 5878. Fu CC, Lee HY, Chen K, et al. 2007; Characterization and application of single fluorescent nanodiamonds as cellular biomarkers. Proc Natl Acad Sci USA 104: 727– 732. Gao XH, Cui YY, Levenson RM, et al. 2004; In vivo cancer targeting and imaging with semiconductor quantum dots. Nat Biotechnol 22: 969– 976. Gareau DS, Bargo PR, Horton WA, et al. 2004; Confocal fluorescence spectroscopy of subcutaneous cartilage expressing green fluorescent protein versus cutaneous collagen autofluorescence. J Biomed Opt 9: 254– 258. Giunchedi P, Conti B, Scalia S, et al. 1998; In vitro degradation study of polyester microspheres by a new HPLC method for monomer release determination. J Control Release 56: 53– 62. Graves EE, Weissleder R, Ntziachristos V. 2004; Fluorescence molecular imaging of small animal tumor models. Curr Mol Med 4: 419– 430. Han X, Pan J. 2009; A model for simultaneous crystallisation and biodegradation of biodegradable polymers. Biomaterials 30: 423– 430. Hansen LK, Mooney DJ, Vacanti JP, et al. 1994; Integrin binding and cell spreading on extracellular matrix act at different points in the cell cycle to promote hepatocyte growth. Mol Biol Cell 5: 967– 975. Heinrichs M, Striepecke E, Bocking A. 1994; Quantitative analysis of the neu oncogene in normal and transformed epithelial breast cells by fluorescence in situ hybridization and laser scanning microscopy. Anal Quant Cytol Histol 16: 233– 239. Hermanson GT. 2008; Bioconjugate Techniques, Second Edition. Elsevier Inc.: London. Jung C, Müller BK, Lamb DC, et al. 2006; A new photostable terrylene diimide dye for applications in single molecule studies and membrane labeling. J Am Chem Soc 128: 5283– 5291. Langer R, Vacanti JP. 1993; Tissue engineering. Science 260: 920– 926. van Lenthe GH, Hagenmüller H, Bohner M, et al. 2007; Non-destructive micro-computed tomography for biological imaging and quantification of scaffold-bone interaction in vivo. Biomaterials 28: 2479– 2490. Loo JS, Ooi CP, Boey FY. 2005; Degradation of poly(lactide-co-glycolide) (PLGA) and poly(L-lactide) (PLLA) by electron beam radiation. Biomaterials 26: 1359– 1367. López-Pérez PM, Marques AP, da Silva RMP, et al. 2007; Effect of chitosan membrane surface modification via plasma induced polymerization on the adhesion of osteoblast-like cells. J Mater Chem 17: 4064– 4071. Luedtke MA, Papazoglou E, Neidrauer M, et al. 2009; Wavelength effects on contrast observed with reflectance in vivo confocabl laser scanning microscopy. Skin Res Technol 15: 482– 488. Luna SM, Silva SS, Gomez ME, et al. 2011; Cell adhesion and proliferation onto chitosan-based membranes treated by plasma surface modification. J Biomater Appl 26(1): 101– 116. Marois Y, Zhang Z, Vert M, et al. 2000; Mechanism and rate of degradation of polyhydroxyoctanoate films in aqueous media: A long-term in vitro study. J Biomed Mater Res 49: 216– 224. Medintz IL, Uyeda HT, Goldman, et al. 2005; Quantum dot bioconjugates for imaging, labelling and sensing. Nat Mater 4: 435– 446. Meyer LE, Otberg N, Sterry W, et al. 2006; In vivo confocal scanning laser microscopy: comparison of the reflectance and fluorescence mode by imaging human skin. J Biomed Opt 11: 044012. Model MA, Healy KE. 2000; Quantification of the surface density of a fluorescent label with the optical microscope. J Biomed Mater Res 50: 90– 96. Montet X, Figueiredo JL, Alencar H, et al. 2007; Tomographic fluorescence imaging of tumor vascular volume in mice. Radiology 242: 751– 758. Murphy CL, Lever MJ. 2002; A ratiometric method of autofluorescence correction used for the quantification of Evans blue dye fluorescence in rabbit arterial tissues. Exp Physiol 87: 163– 170. Muzzarelli RA, Xia W, Tomasetti M, et al. 1995; Depolymerization of chitosan and substituted chitosans with the aid of a wheat germ lipase preparation. Enzyme Microb Technol 17: 541– 545. Nagata M, Kono Y, Sakai W, et al. 1999; Preparation and characterization of novel biodegradable optically active network polyesters from malic acid. Macromolecules 32: 7762– 7767. Naik S, Piwnica-Worms D. 2007; Real-time imaging of beta-catenin dynamics in cells and living mice. Proc Natl Acad Sci USA 104: 17465– 17470. Ntziachristos V, Bremer C, Graves EE, et al. 2002a; In vivo tomographic imaging of near-infrared fluorescent probes. Mol Imaging 1: 82– 88. Ntziachristos V, Schellenberger EA, Ripoll J, et al. 2004; Visualization of antitumor treatment by means of fluorescence molecular tomography with an annexin V-Cy5.5 conjugate. Proc Natl Acad Sci USA 101: 12294– 12299. Ntziachristos V, Tung CH, Bremer C, et al. 2002b; Fluorescence molecular tomography resolves protease activity in vivo. Nat Med 8: 757– 760. Park H, Park K, Kim D. 2006; Preparation and swelling behavior of chitosan-based superporous hydrogels for gastric retention application. J Biomed Mater Res A 76: 144– 150. Picart C. 2005; Controlled Degradability of Polysaccharide Multilayer Films In Vitro and In Vivo. Adv Funct Mater 15: 1771– 1780. Qiu Y, Zhang N, Kang Q, et al. 2009; Fabrication of permeable tubular constructs from chemically modified chitosan with enhanced antithrombogenic property. J Biomed Mater Res B Appl Biomater 90: 668– 678. Ren D, Yi H, Wang W, et al. 2005; The enzymatic degradation and swelling properties of chitosan matrices with diffeBrent degrees of N-acetylation. Carbohydr Res 340: 2403– 2410. Renouf-Glauser AC, Rose J, Farrar, et al. 2006; Comparison of the hydrolytic degradation and deformation properties of a PLLA-lauric acid based family of biomaterials. Biomacromolecules 7: 612– 617. Romijn HJ, Janszen AW, van Marle J. 1994; Quantitative immunofluorescence data suggest a permanently enhanced GAD67/GAD65 ratio in nerve endings in rat cerebral cortex damaged by early postnatal hypoxia-ischemia: a comparison between two computer-assisted procedures for quantification of confocal laser scanning microscopic immunofluorescence images. Brain Res 657: 245– 257. Wang JW, Hon MH. 2003; Preparation and characterization of pH sensitive sugar mediated (polyethylene glycol/chitosan) membrane. J Mater Sci Mater Med 14: 1079– 1088. Weissleder R, Ntziachristos V. 2003; Shedding light onto live molecular targets. Nat Med 9: 123– 128. Willerth SM, Arendas KJ, Gottlieb DI, et al. 2006; Optimization of fibrin scaffolds for differentiation of murine embryonic stem cells into neural lineage cells. Biomaterials 27: 5990– 6003. Wolbank S, Redl H. 2008; Non-invasive In Vivo Tracking of Fibrin by Fluorescence Imaging. Poster Presentation in 8th World Biomaterials Congress, Amsterdam, the Netherlands. Wolf M. 2008; Influence of matrigel on biodistribution studies in cancer research. Die Pharmazie 63: 43– 48. Yang Y, Yiu HH, El Haj AJ. 2005; On-line fluorescent monitoring of the degradation of polymeric scaffolds for tissue engineering. Analyst 130: 1502– 1506. Yang J, Zhang Y, Gautam S, et al. 2009; Development of aliphatic biodegradable photoluminescent polymers. Proc Natl Acad Sci USA 106: 10086– 10091. Zhang Q, Liu L, Zhou H, et al. 2000; pH-responsive swelling behavior of collagen complex materials. Artif Cells Blood Substit Immobil Biotechnol 28: 255– 262. Zhao W, Carreira EM. 2005; Conformationally restricted Aza-Bodipy: A highly fluorescent, stable, near-Infrared-absorbing dye. Angew Chem 117: 1705– 1707. Zipfel WR, Williams RM, Webb WW. 2003; Nonlinear magic: multiphoton microscopy in microscopy in the biosciences. Nat Biotech 21: 1369– 1377. Zucker RM, Jeffay SC. 2006; Confocal laser scanning microscopy of whole mouse ovaries: excellent morphology, apoptosis detection, and spectroscopy. Cytometry A 69: 930– 939. Citing Literature Supporting Information Supporting information may be found in the online version of this article. Filename Description term_494_sm_table.jpgJPEG image, 67.2 KB Supporting information Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article. Volume7, Issue1January 2013Pages 39-50 ReferencesRelatedInformation