已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Fluorescent labeling of chitosan for use in non-invasive monitoring of degradation in tissue engineering

壳聚糖 体内 生物材料 荧光团 生物医学工程 化学 生物物理学 荧光 体外 组织工程 荧光显微镜 共焦显微镜 材料科学 生物化学 细胞生物学 医学 生物技术 生物 物理 量子力学
作者
Cassilda Cunha-Reis,Alicia J. El Haj,Xuebin Yang,Ying Yang
出处
期刊:Journal of Tissue Engineering and Regenerative Medicine [Wiley]
卷期号:7 (1): 39-50 被引量:42
标识
DOI:10.1002/term.494
摘要

Journal of Tissue Engineering and Regenerative MedicineVolume 7, Issue 1 p. 39-50 Research Article Fluorescent labeling of chitosan for use in non-invasive monitoring of degradation in tissue engineering Cassilda Cunha-Reis, Cassilda Cunha-Reis Institute for Science and Technology in Medicine, School of Medicine, Keele University, Stoke-on-Trent, ST4 7QB UKSearch for more papers by this authorAlicia J. El Haj, Corresponding Author Alicia J. El Haj Institute for Science and Technology in Medicine, School of Medicine, Keele University, Stoke-on-Trent, ST4 7QB UKProfessor Alicia J. El Haj, Institute for Science and Technology in Medicine, School of Medicine, Keele University, Thornburrow Drive, Hartshill, Stoke-on-Trent, ST4 7QB, UK. E-mail: [email protected]Search for more papers by this authorXuebin Yang, Xuebin Yang Department of Oral biology, University of Leeds, Leeds, LS2 9 LU UKSearch for more papers by this authorYing Yang, Ying Yang Institute for Science and Technology in Medicine, School of Medicine, Keele University, Stoke-on-Trent, ST4 7QB UKSearch for more papers by this author Cassilda Cunha-Reis, Cassilda Cunha-Reis Institute for Science and Technology in Medicine, School of Medicine, Keele University, Stoke-on-Trent, ST4 7QB UKSearch for more papers by this authorAlicia J. El Haj, Corresponding Author Alicia J. El Haj Institute for Science and Technology in Medicine, School of Medicine, Keele University, Stoke-on-Trent, ST4 7QB UKProfessor Alicia J. El Haj, Institute for Science and Technology in Medicine, School of Medicine, Keele University, Thornburrow Drive, Hartshill, Stoke-on-Trent, ST4 7QB, UK. E-mail: [email protected]Search for more papers by this authorXuebin Yang, Xuebin Yang Department of Oral biology, University of Leeds, Leeds, LS2 9 LU UKSearch for more papers by this authorYing Yang, Ying Yang Institute for Science and Technology in Medicine, School of Medicine, Keele University, Stoke-on-Trent, ST4 7QB UKSearch for more papers by this author First published: 28 November 2011 https://doi.org/10.1002/term.494Citations: 34Read the full textAboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Abstract The establishment of non-invasive analytical tools for assessing the in-situ use of biomaterials for surgical implants or scaffolds in tissue engineering and polymer-based therapies is fundamental. This study established a method for fluorescent tracking of the degradation of a chitosan membrane scaffold for use in vitro in bioreactors and ultimately in vivo. The basis of this tracking system is a fluorescence emitting biomaterial obtained by covalent binding of the fluorophore tetramethylrhodamine isothiocyanate (TRITC) onto the backbone of chitosan. Using confocal microscopy, this study quantitated the reductions in fluorescence intensity of the membrane and correlated these decreases with weight loss during polymer breakdown, thereby providing a technique for non-destructively assessing the extent of degradation of chitosan materials over time in vitro. Using multispectral imaging in a mouse model, the study assessed the degradation profile of the fluorophore-labeled biomaterial in vivo in real time and identified the dispersing pathway of the chitosan membrane degradation products in vivo. The results revealed that TRITC conjugated chitosan was biocompatible and supported bone cell growth. The changes in fluorescence intensity correlated well with weight loss up to 16 weeks of in vitro culture and could be monitored over two weeks in vivo. Copyright © 2011 John Wiley & Sons, Ltd. References Agnihotri SA, Kulkarni VD, Kulkarni AR, et al. 2006; Degradation of chitosan and chemically modified chitosan by viscosity measurements. J Appl Polym Sci 102: 3255– 3258. Bingaman S, Huxley VH, Rumbaut RE. 2003; Fluorescent dyes modify properties of proteins used in microvascular research. Microcirculation 10: 221– 231. Bohmer RM, Scharf E, Assoian RK. 1996; Cytoskeletal integrity is required throughout the mitogen stimulation phase of the cell cycle and mediates the anchorage-dependent expression of cyclin D1. Mol Biol Cell 7: 101– 111. Boucard N, Viton C, Agay D, et al. 2007; The use of physical hydrogels of chitosan for skin regeneration following third-degree burns. Biomaterials 28: 3478– 3488. Capek M, Janacek J, Kubinova L. 2006; Methods for compensation of the light attenuation with depth of images captured by a confocal microscope. Microsc Res Tech 69: 624– 635. Cesaro SN. 1998; FTIR study of a silver-thiourea complex generated in argon and nitrogen cryogenic matrices. Vib Spectrosc 16: 5. Cho H, An J. 2006; The effect of epsilon-caproyl/D,L-lactyl unit composition on the hydrolytic degradation of poly(D,L-lactide-ran-epsilon-caprolactone)-poly(ethylene glycol)-poly(D,L-lactide-ran-epsilon-caprolactone). Biomaterials 27: 544– 552. Dhanasingh S, Nallaperumal SK. 2010; Chitosan/Casein Microparticles: Preparation, Characterization and Drug Release Studies. International Journal of Engineering and Applied Sciences 6: 5– 11. Dunn KW, Mayor S, Myers JN, et al. 1994; Applications of ratio fluorescence microscopy in the study of cell physiology. FASEB J 8: 573– 582. Feng J, Zhao L, Yu Q. 2004; Receptor-mediated stimulatory effect of oligochitosan in macrophages. Biochem Biophys Res Commun 317: 414– 420. Freier T, Koh HS, Kazazian K, et al. 2005; Controlling cell adhesion and degradation of chitosan films by N-acetylation. Biomaterials 26: 5872– 5878. Fu CC, Lee HY, Chen K, et al. 2007; Characterization and application of single fluorescent nanodiamonds as cellular biomarkers. Proc Natl Acad Sci USA 104: 727– 732. Gao XH, Cui YY, Levenson RM, et al. 2004; In vivo cancer targeting and imaging with semiconductor quantum dots. Nat Biotechnol 22: 969– 976. Gareau DS, Bargo PR, Horton WA, et al. 2004; Confocal fluorescence spectroscopy of subcutaneous cartilage expressing green fluorescent protein versus cutaneous collagen autofluorescence. J Biomed Opt 9: 254– 258. Giunchedi P, Conti B, Scalia S, et al. 1998; In vitro degradation study of polyester microspheres by a new HPLC method for monomer release determination. J Control Release 56: 53– 62. Graves EE, Weissleder R, Ntziachristos V. 2004; Fluorescence molecular imaging of small animal tumor models. Curr Mol Med 4: 419– 430. Han X, Pan J. 2009; A model for simultaneous crystallisation and biodegradation of biodegradable polymers. Biomaterials 30: 423– 430. Hansen LK, Mooney DJ, Vacanti JP, et al. 1994; Integrin binding and cell spreading on extracellular matrix act at different points in the cell cycle to promote hepatocyte growth. Mol Biol Cell 5: 967– 975. Heinrichs M, Striepecke E, Bocking A. 1994; Quantitative analysis of the neu oncogene in normal and transformed epithelial breast cells by fluorescence in situ hybridization and laser scanning microscopy. Anal Quant Cytol Histol 16: 233– 239. Hermanson GT. 2008; Bioconjugate Techniques, Second Edition. Elsevier Inc.: London. Jung C, Müller BK, Lamb DC, et al. 2006; A new photostable terrylene diimide dye for applications in single molecule studies and membrane labeling. J Am Chem Soc 128: 5283– 5291. Langer R, Vacanti JP. 1993; Tissue engineering. Science 260: 920– 926. van Lenthe GH, Hagenmüller H, Bohner M, et al. 2007; Non-destructive micro-computed tomography for biological imaging and quantification of scaffold-bone interaction in vivo. Biomaterials 28: 2479– 2490. Loo JS, Ooi CP, Boey FY. 2005; Degradation of poly(lactide-co-glycolide) (PLGA) and poly(L-lactide) (PLLA) by electron beam radiation. Biomaterials 26: 1359– 1367. López-Pérez PM, Marques AP, da Silva RMP, et al. 2007; Effect of chitosan membrane surface modification via plasma induced polymerization on the adhesion of osteoblast-like cells. J Mater Chem 17: 4064– 4071. Luedtke MA, Papazoglou E, Neidrauer M, et al. 2009; Wavelength effects on contrast observed with reflectance in vivo confocabl laser scanning microscopy. Skin Res Technol 15: 482– 488. Luna SM, Silva SS, Gomez ME, et al. 2011; Cell adhesion and proliferation onto chitosan-based membranes treated by plasma surface modification. J Biomater Appl 26(1): 101– 116. Marois Y, Zhang Z, Vert M, et al. 2000; Mechanism and rate of degradation of polyhydroxyoctanoate films in aqueous media: A long-term in vitro study. J Biomed Mater Res 49: 216– 224. Medintz IL, Uyeda HT, Goldman, et al. 2005; Quantum dot bioconjugates for imaging, labelling and sensing. Nat Mater 4: 435– 446. Meyer LE, Otberg N, Sterry W, et al. 2006; In vivo confocal scanning laser microscopy: comparison of the reflectance and fluorescence mode by imaging human skin. J Biomed Opt 11: 044012. Model MA, Healy KE. 2000; Quantification of the surface density of a fluorescent label with the optical microscope. J Biomed Mater Res 50: 90– 96. Montet X, Figueiredo JL, Alencar H, et al. 2007; Tomographic fluorescence imaging of tumor vascular volume in mice. Radiology 242: 751– 758. Murphy CL, Lever MJ. 2002; A ratiometric method of autofluorescence correction used for the quantification of Evans blue dye fluorescence in rabbit arterial tissues. Exp Physiol 87: 163– 170. Muzzarelli RA, Xia W, Tomasetti M, et al. 1995; Depolymerization of chitosan and substituted chitosans with the aid of a wheat germ lipase preparation. Enzyme Microb Technol 17: 541– 545. Nagata M, Kono Y, Sakai W, et al. 1999; Preparation and characterization of novel biodegradable optically active network polyesters from malic acid. Macromolecules 32: 7762– 7767. Naik S, Piwnica-Worms D. 2007; Real-time imaging of beta-catenin dynamics in cells and living mice. Proc Natl Acad Sci USA 104: 17465– 17470. Ntziachristos V, Bremer C, Graves EE, et al. 2002a; In vivo tomographic imaging of near-infrared fluorescent probes. Mol Imaging 1: 82– 88. Ntziachristos V, Schellenberger EA, Ripoll J, et al. 2004; Visualization of antitumor treatment by means of fluorescence molecular tomography with an annexin V-Cy5.5 conjugate. Proc Natl Acad Sci USA 101: 12294– 12299. Ntziachristos V, Tung CH, Bremer C, et al. 2002b; Fluorescence molecular tomography resolves protease activity in vivo. Nat Med 8: 757– 760. Park H, Park K, Kim D. 2006; Preparation and swelling behavior of chitosan-based superporous hydrogels for gastric retention application. J Biomed Mater Res A 76: 144– 150. Picart C. 2005; Controlled Degradability of Polysaccharide Multilayer Films In Vitro and In Vivo. Adv Funct Mater 15: 1771– 1780. Qiu Y, Zhang N, Kang Q, et al. 2009; Fabrication of permeable tubular constructs from chemically modified chitosan with enhanced antithrombogenic property. J Biomed Mater Res B Appl Biomater 90: 668– 678. Ren D, Yi H, Wang W, et al. 2005; The enzymatic degradation and swelling properties of chitosan matrices with diffeBrent degrees of N-acetylation. Carbohydr Res 340: 2403– 2410. Renouf-Glauser AC, Rose J, Farrar, et al. 2006; Comparison of the hydrolytic degradation and deformation properties of a PLLA-lauric acid based family of biomaterials. Biomacromolecules 7: 612– 617. Romijn HJ, Janszen AW, van Marle J. 1994; Quantitative immunofluorescence data suggest a permanently enhanced GAD67/GAD65 ratio in nerve endings in rat cerebral cortex damaged by early postnatal hypoxia-ischemia: a comparison between two computer-assisted procedures for quantification of confocal laser scanning microscopic immunofluorescence images. Brain Res 657: 245– 257. Wang JW, Hon MH. 2003; Preparation and characterization of pH sensitive sugar mediated (polyethylene glycol/chitosan) membrane. J Mater Sci Mater Med 14: 1079– 1088. Weissleder R, Ntziachristos V. 2003; Shedding light onto live molecular targets. Nat Med 9: 123– 128. Willerth SM, Arendas KJ, Gottlieb DI, et al. 2006; Optimization of fibrin scaffolds for differentiation of murine embryonic stem cells into neural lineage cells. Biomaterials 27: 5990– 6003. Wolbank S, Redl H. 2008; Non-invasive In Vivo Tracking of Fibrin by Fluorescence Imaging. Poster Presentation in 8th World Biomaterials Congress, Amsterdam, the Netherlands. Wolf M. 2008; Influence of matrigel on biodistribution studies in cancer research. Die Pharmazie 63: 43– 48. Yang Y, Yiu HH, El Haj AJ. 2005; On-line fluorescent monitoring of the degradation of polymeric scaffolds for tissue engineering. Analyst 130: 1502– 1506. Yang J, Zhang Y, Gautam S, et al. 2009; Development of aliphatic biodegradable photoluminescent polymers. Proc Natl Acad Sci USA 106: 10086– 10091. Zhang Q, Liu L, Zhou H, et al. 2000; pH-responsive swelling behavior of collagen complex materials. Artif Cells Blood Substit Immobil Biotechnol 28: 255– 262. Zhao W, Carreira EM. 2005; Conformationally restricted Aza-Bodipy: A highly fluorescent, stable, near-Infrared-absorbing dye. Angew Chem 117: 1705– 1707. Zipfel WR, Williams RM, Webb WW. 2003; Nonlinear magic: multiphoton microscopy in microscopy in the biosciences. Nat Biotech 21: 1369– 1377. Zucker RM, Jeffay SC. 2006; Confocal laser scanning microscopy of whole mouse ovaries: excellent morphology, apoptosis detection, and spectroscopy. Cytometry A 69: 930– 939. Citing Literature Supporting Information Supporting information may be found in the online version of this article. Filename Description term_494_sm_table.jpgJPEG image, 67.2 KB Supporting information Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article. Volume7, Issue1January 2013Pages 39-50 ReferencesRelatedInformation
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
打打应助大方的梦柏采纳,获得10
1秒前
2秒前
林林发布了新的文献求助10
4秒前
jing完成签到,获得积分20
6秒前
科研通AI2S应助科研通管家采纳,获得10
7秒前
Jasper应助科研通管家采纳,获得10
7秒前
彭于晏应助科研通管家采纳,获得10
7秒前
7秒前
11应助科研通管家采纳,获得10
7秒前
9秒前
华仔应助xiao采纳,获得10
10秒前
平底锅攻击完成签到 ,获得积分10
12秒前
研友_8R3XdL发布了新的文献求助10
12秒前
14秒前
15秒前
小明同学关注了科研通微信公众号
16秒前
卿昀发布了新的文献求助30
17秒前
水蜜桃完成签到 ,获得积分10
17秒前
尚慧慧发布了新的文献求助10
21秒前
22秒前
忧郁的慕灵完成签到,获得积分10
23秒前
量子星尘发布了新的文献求助10
25秒前
科目三应助霸气的老虎采纳,获得30
26秒前
细心的山槐完成签到,获得积分10
26秒前
28秒前
活泼的踏歌完成签到,获得积分10
28秒前
HS发布了新的文献求助10
28秒前
隐形曼青应助CHOW采纳,获得10
29秒前
琳琳发布了新的文献求助10
31秒前
橙子应助www采纳,获得10
31秒前
31秒前
酷波er应助石莫言采纳,获得10
33秒前
36秒前
38秒前
琳琳完成签到,获得积分10
38秒前
Owen应助阿歪歪采纳,获得10
39秒前
40秒前
41秒前
43秒前
44秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
宽量程高线性度柔性压力传感器的逆向设计 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3980612
求助须知:如何正确求助?哪些是违规求助? 3524500
关于积分的说明 11221687
捐赠科研通 3261917
什么是DOI,文献DOI怎么找? 1800975
邀请新用户注册赠送积分活动 879568
科研通“疑难数据库(出版商)”最低求助积分说明 807320